

Angle-resolved photoemission from ferromagnetic 3d-systems: A combination of the one-step model with the self-consistent LSDA + DMFT approach

Jürgen Braun

Institut für Mathematik und Angewandte Informatik

Universität Hildesheim

Theory:

- J. Minár, S. Chadov, H. Ebert: Uni. München
- A. Lichtenstein: Uni. Hamburg
- M. Katsnelson: Uni. Nijmegen

Experiments:

- Ch. Fadley, L. Plucinski: Uni. California Davis
- M. Mulazzi, G. Panaccione: Elettra, Trieste

- Theoretical aspects of spinpolarized photoemission
- Ni(011): Electronic structure and angle-resolved UV-photoemission
- Fe(001): Electronic structure and angle-resolved UV-photoemission
- Ni(001): Fermi surface and angle-resolved X-ray photoemission
- Conclusions and outlook

The interaction of the photoelectron with the rest system is neglected

Inserting $|\Psi_I >$ and $|\Psi_F >$ in Fermi's Golden Rule Summation over all possible final states Averaging in the Grand Canonical Ensemble

$$\frac{1}{2\pi} < [T^{\dagger}(t), T(t')]_{+} > = A^{(1)}(t, t') = \frac{1}{2\pi\hbar} \int dE e^{-\frac{i}{\hbar}E(t-t')} A^{(1)}(E)$$

$$T^{PES} = \sum_{\mathbf{k}} M^{P}_{\mathbf{e},\mathbf{k}} a_{\mathbf{k}} \qquad T^{IPE} = \sum_{\mathbf{k}} M^{P}_{\mathbf{e},\mathbf{k}} a^{\dagger}_{\mathbf{k}}$$

One step model of photoemission

$$I(\epsilon_e, \mathbf{k}_{\parallel}) = \int d\mathbf{r} \int d\mathbf{r}' \ \Psi_e^{\dagger}(\mathbf{r}) \ \boldsymbol{\alpha} \mathbf{A}_0 \ A^{(1)}(\mathbf{r}, \mathbf{r}', E) \ (\boldsymbol{\alpha} \mathbf{A}_0)^{\dagger} \ \Psi_e(\mathbf{r}')$$

 $\hat{\boldsymbol{\alpha}} \cdot \mathbf{A}_0$: relativistic form of electron-photon interaction

Calculation of the initial states for $\Sigma^{DMFT}(E) \neq 0$

Relativistic LDA-Hamiltonian

$$h_{\text{LDA}}(\mathbf{r}) = -ic\boldsymbol{\alpha}\boldsymbol{\nabla} + \beta c^2 - c^2 + V_{\text{LDA}}(\mathbf{r}) + \beta \boldsymbol{\sigma} \mathbf{B}_{\text{LDA}}(\mathbf{r})$$
$$V_{\text{LDA}}(\mathbf{r}) = \frac{1}{2}(V_{\text{LDA}}^{\uparrow}(\mathbf{r}) + V_{\text{LDA}}^{\downarrow}(\mathbf{r})) \qquad \mathbf{B}_{\text{LDA}}(\mathbf{r}) = \frac{1}{2}(V_{\text{LDA}}^{\uparrow}(\mathbf{r}) - V_{\text{LDA}}^{\downarrow}(\mathbf{r}))\mathbf{b}$$

Generalized nonlocal potential

$$U(\mathbf{r}, \mathbf{r}', E) = \delta(\mathbf{r} - \mathbf{r}') (V_{\text{LDA}}(\mathbf{r}) + \beta \boldsymbol{\sigma} \mathbf{B}_{\text{LDA}}(\mathbf{r})) + V(\mathbf{r}, \mathbf{r}', E) + \beta \boldsymbol{\sigma} \mathbf{B}(\mathbf{r}, \mathbf{r}', E)$$
$$V(\mathbf{r}, \mathbf{r}', E) = \frac{1}{2} (\Sigma^{\uparrow}(\mathbf{r}, \mathbf{r}', E) + \Sigma^{\downarrow}(\mathbf{r}, \mathbf{r}', E)) \quad \mathbf{B}(\mathbf{r}, \mathbf{r}', E) = \frac{1}{2} (\Sigma^{\uparrow}(\mathbf{r}, \mathbf{r}', E) - \Sigma^{\downarrow}(\mathbf{r}, \mathbf{r}', E)) \mathbf{b}$$

Dyson equation for the initial state Green function

$$\left[E + \mu_0 + ic\boldsymbol{\alpha}\boldsymbol{\nabla} - \beta c^2 + c^2\right]G_1^+(\mathbf{r}, \mathbf{r}', E) + \int U(\mathbf{r}, \mathbf{r}'', E)G_1^+(\mathbf{r}'', \mathbf{r}', E)d\mathbf{r}'' = \delta(\mathbf{r} - \mathbf{r}')$$

Time reversed SPLEED state for the photoelectron

 $\phi_e^{SP}({\bf r})\equiv \langle {\bf r}|G_2^-|e,{\bf k}_{\parallel}\rangle$

Relativistic dipole selection rules

 $M_{PES} \neq 0$ für $\Delta \kappa = \pm \mathbf{1}$, $\kappa + \kappa' = \mathbf{0}$ und $\mu + \mu' = \mathbf{0}$

$$\mathcal{A}^{lm}_{\kappa'\mu'-\kappa''\mu''} = \int_{(4\pi)} d\hat{\mathbf{r}} \ \chi^{\mu't*}_{\kappa'}(\hat{\mathbf{r}}) \ (\hat{\boldsymbol{\alpha}}\cdot\mathbf{A}_0) \ Y^m_l(\hat{\mathbf{r}}) \ \chi^{\mu''}_{-\kappa''}(\hat{\mathbf{r}})$$

 $\hat{\boldsymbol{\alpha}} \cdot \mathbf{A}_0$: relativistic form of electron-photon interaction

$$\chi^{\mu}_{\kappa}(\mathbf{\hat{r}}) = \sum_{s=\pm\frac{1}{2}} \mathcal{C}_{\kappa\mu s} Y^{\mu-s}_{l}(\mathbf{\hat{r}}) \chi^{s}$$

The spin-angular functions χ^{μ}_{κ} are given by the Pauli spinors χ^s , Clebsch-Gordan coefficients $C_{\kappa\mu s}$ and by the spherical harmonics $Y_l^{\mu-s}(\hat{\mathbf{r}})$

$$\begin{split} \frac{\partial}{\partial r} C_{n\kappa'\mu'\kappa\mu}(r) &= -pr^2 \left(n^u_{\kappa'}(kr)\mathcal{K}^+_{n\kappa'\mu'\kappa\mu}(r) + n^l_{\kappa'}(kr)\mathcal{K}^-_{n\kappa'\mu'\kappa\mu}(r) \right) \\ \frac{\partial}{\partial r} S_{n\kappa'\mu'\kappa\mu}(r) &= -pr^2 \left(j^u_{\kappa'}(kr)\mathcal{K}^+_{n\kappa'\mu'\kappa\mu}(r) + j^l_{\kappa'}(kr)\mathcal{K}^-_{n\kappa'\mu'\kappa\mu}(r) \right), \qquad p = k \left(\frac{E+c^2}{c} \right) \end{split}$$

$$\mathcal{K}^{+}_{n\kappa'\mu'\kappa\mu}(r) = \sum_{\kappa'''\mu'''} \sum_{l''m''} \frac{1}{2} (U^{\uparrow}_{l''m''}(r) I^{+m}_{\kappa'\mu'l''m''\kappa''\mu'''} + U^{\downarrow}_{l''m''}(r) I^{+p}_{\kappa'\mu'l''m''\kappa''\mu'''}) \phi^{u}_{\kappa''\mu\mu'''\kappa\mu}(r)$$

$$\mathcal{K}_{n\kappa'\mu'\kappa\mu}^{-}(r) = \sum_{\kappa'''\mu'''} \sum_{l''m''} \frac{1}{2} (U_{l''m''}^{\uparrow}(r)I_{\kappa'\mu'l''m''\kappa''\mu''}^{-p} + U_{l''m''}^{\downarrow}(r)I_{\kappa'\mu'l''m''\kappa''\mu''}^{-m}) \phi_{\kappa''\mu'''\kappa\mu''}^{l}(r)$$

$$U_{l''m''}^{\uparrow\downarrow}(r,r',E) = V^{\uparrow\downarrow}(r)\delta(r-r') + \Sigma_{l''m''}^{\uparrow\downarrow DMFT}(E)\delta_{l''2}$$

Spinpolarized bandstructure

Comparison between experiment and theory

J. Braun, J. Minár et al., PRL 97, 227601 (2006)

Fe(001): Fermi surface

E_{hv}=50eV, linear polarised light
Experiments Mulazzi et al.

- $E_{h\nu}$ =50eV, p-polarised light
- Experiments Mulazzi et al.

W(011): X-ray photoemission at $T \neq 0 K^{o}$

effect of photon momentum considered

Ni(001): X-ray photoemission and Fermi surface

Relativistic DFT-ONE-STEP-DMFT (REDOSD) approach \downarrow Improved description of the electronic structure of ferromagnetic 3d-metals Detailed analysis of electronic dispersion in the UV- and X-ray regime Spectroscopic investigations on Mn and hexagonal Co, NiO or FeCo Consideration of the spatial dependence of the electronic self-energy Σ \downarrow Numerical solution of the corresponding integro-differential equation for Σ \downarrow Spectroscopic investigations to highly correlated materials and consideration of Phonon effects beyond Debey-Waller

Combination of the TBKKR-method with the REDOST approach $\downarrow \downarrow$ Quantitative description of electronic structure and photoemission from arbitrary 2D-structures like multilayers or adsorbate systems

Magnetic couplings $\begin{array}{ll} \operatorname{MC} \neq 0 & \text{for} & B_z : \delta_{\kappa,\kappa'(-\kappa'-1)} \delta_{\mu,\mu'} & B_{xy} : \delta_{\kappa,\kappa'(-\kappa'-1)} \delta_{\mu,\mu'\pm 1} \\ \kappa = l, \, \kappa > 0; \ \kappa = -l-1, \, \kappa < 0; \ \mu = l+s = -|\kappa|+0.5, ..., |\kappa|-0.5 \end{array}$ $\phi_{n\kappa}^{\mu}(\mathbf{r}) = \sum J_{\kappa'}^{\mu'}(\mathbf{r}) C_{n\kappa\mu\kappa'\mu'}(r) - N_{\kappa'}^{\mu'}(\mathbf{r}) S_{n\kappa\mu\kappa'\mu'}(r)$ $\frac{\partial}{\partial r}C_{n\kappa'\mu'\kappa\mu}(r) = -pr^2 \left(n^u_{\kappa'}(kr)\mathcal{K}^+_{n\kappa'\mu'\kappa\mu}(r) + n^l_{\kappa'}(kr)\mathcal{K}^-_{n\kappa'\mu'\kappa\mu}(r) \right)$ $\frac{\partial}{\partial r}S_{n\kappa'\mu'\kappa\mu}(r) = -pr^2\left(j^u_{\kappa'}(kr)\mathcal{K}^+_{n\kappa'\mu'\kappa\mu}(r) + j^l_{\kappa'}(kr)\mathcal{K}^-_{n\kappa'\mu'\kappa\mu}(r)\right), \qquad p = k\left(\frac{E+c^2}{c}\right)$ $\mathcal{K}^{-}_{n\kappa'\mu'\kappa\mu}(r) = \sum_{\kappa''\mu''} \sum_{\mu''\mu''} \frac{1}{2} (V^{up}_{nl''m''}(r) I^{-p}_{\kappa'\mu'l''m''\kappa''\mu''} + V^{down}_{nl''m''}(r) I^{-m}_{\kappa'\mu'l''m''\kappa''\mu'''}) \phi^{l}_{n\kappa'''\mu'''\kappa\mu}(r)$

The integrals $I^{\pm p/m}$ can be written in terms of Clebsch-Gordan coefficients $C_{\kappa,\mu,s}$, multiplied by the three components of the direction vector **b** of **B** and by the Gaunt coefficients $I_{l'm'l''m''l''m''}$, which describe the angular mixing.

Spinpolarized bandstructure

Comparison between experiment and theory

J. Braun, J. Minár et al., PRL 97, 227601 (2006)

Spinpolarized bandstructure

Spin- and symmetry resolved self-energy for Fe

Comparison between experiment and theory

Ni(001): X-ray photoemission

