High Resolution Photoemission at BESSY

Jörg Fink

BESSY Berlin

Leibniz Institute for Solid State and Materials Research Dresden

TU Dresden

Photoemission at BESSY

There are numereous photoemission experiments at BESSY

Focus to 2 new beamlines

1. High kinetic energy PES: "HIKE"

2. Very high resolution ARPES: ,,1³" spectrometer

Goal: photoelectron spectroscopy with bulk sensitivity

Several experimental constraints:

- Stability
- Resolution
- Intensity (cross section)

KMC I beam line at BESSY

Bending magnet

Double crystal monochromator: very high resolution in the backscattering mode

High brilliance

HIKE electron spectrometer

Scienta R4000 modified for analysing at kinetic energies from 0 to 10 KeV at high resolution

Current capabilities- Au 4f photoemission spectrum

Analyser resolution:80 meVResolving power:75 000

Photon resolution:50 meVResolving power:120 000

T-dependence of a Cu/Ni interface

A perfect interface

A real interface is never perfect

model system: multilayer $(Cu_xNi_5)_n = 2, 4, 5$

E. Holmström et al. PRL 97, 266106 (2006)

Chemical shifts as a function of annealing T for $(Cu_xNi_5)_n$

Theory DFT/CPA - Γ represents the quality of the interface

The "1³" ARPES Spectrometer

UE112

Scienta R4000

T < 1K

He3 Janis

 $\Delta E < 1 \text{ meV}$

 $\Delta E < 1 \text{ meV}$

$$1x1x1 = 1^3$$

Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden

Optical Design of the Beamline

R. Follath et al.

Calculated Performance vs. Measured

Neon 2p -> n s excitation at 21.6 eV

 $\Delta \mathbf{E} = \mathbf{0.165} \ \mathbf{meV}$

Resolving power 140 000 ! Variable polarization

The Spectrometer and the Cryostat

The Spectrometer and the Cryostat

Energy resolution tests

FWHM = 3.45 meV Doppler = 3.25 meV UV lamp = 1.2 meV

R4000 = i*0.316 meV !!!

Ag polycrystal T = 6K PE = 2 eV / 0.1mm FWHM = 1.3 meV

NbSe₂ single crystal Tc=7.2K $\Delta = 1 \text{ meV}$

S. Borisenko et al.

Heavy Fermion Systems $CeTIn_5$, T = Co, Rh, Ir

$CeRhIn_5$ hv = 100 eV

A. Koitzsch et al.

Semimetal to Metal Transition of Graphite Upon n-Doping

A. Grüneis, Th. Pichler at al.

"Waterfalls" in High-Tc Superconductors

D.S. Inosov, A.A. Kordyuk et al. cond-mat

IFW Dressden

Bernd Büchner Sergei Borisenko Roland Hübel Andreas Koitzsch Sasha Kordyuk Volodya Zabolotnyy D.S. Inosov Martin Knupfer

BESSY

Wolfgang Eberhardt Ramona Weber Rolf Follath Hermann Dürr M. Giogoi F. Schäfers W. Braun

TU Dresden

Clemens Laubschat Serguei Molodtsov

Uppsala Univ.

Svante Svensson O. Karis G. Öhrwall G. Andersson M. Marcellini B. Johnsson