Fermiology of bilayer colossal magnetoresistant manganites

Mark S. Golden
Van der Waals-Zeeman Institute
Universiteit van Amsterdam
FOM-A-11

Outline

- Intro. to colossal magneto-resistant manganites
 - bilayer systems: La\(_{2-2x}\)Sr\(_{1+2x}\)Mn\(_3\)O\(_7\)

- Angle-resolved photoemission data:
 - history, status quo
 - Fermi surfaces
 - quasiparticles
 - coupling to boson mode(s)
 - surprises in the temperature dependence

- Summary, conclusions and outlook
Colossal (negative) magnetoresistance: CMR

- double exchange means: ferromagnetic (FM) situation favours hopping
- CMR effects of 4000%

Bilayer managanites

- reduced dimensionality
 - greater role for fluctuations
 - connection to the high Tc cuprates?
 - strong anisotropy
- (even) larger CMR effect
- cleavage surfaces suitable for surface sensitive probes:
 - ARPES
 - STM / STS

La, Sr, O rock salt blocks
double MnO₂ planes

cleavage here

pic: Matt Rosseinsky

© Mark S. Golden 2007
La$_{2-2x}$Sr$_{1+2x}$Mn$_2$O$_7$ as 'parent insulator', x gives no. of additional holes

Outline

- Intro. to colossal magneto-resistant maganites
 - bilayer systems: La$_{2-2x}$Sr$_{1+2x}$Mn$_3$O$_7$
- Angle-resolved photoemission data:
 - history, status quo
 - Fermi surfaces
 - quasiparticles
 - coupling to boson mode(s)
 - surprises in the temperature dependence
- Summary, conclusions and outlook
Expectations from band structure calculations

- **DFT says: half-metallic ferromagnet**

 Majority band: quasi-2D Fermi surface

- **e_g bandwidth: both**

 $3d_{x^2-y^2}$ and $3d_{z^2-r^2}$ are occupied

ARPES of 2L manganites: history

Colorado group:

- **ghost Fermi surface, pseudogap**

 Dessau et al., PRL1998

 data: $x=0.4$

- **Fermi surface nesting (no QP's anywhere)**

 Chuang et al., Science 2001

 data: $x=0.4$

hv=50eV

integrated ± 200meV of E_F
ARPES of 2L manganites: status quo

general statement 2L manganites: nodal metal (Fermi arc)
- Data: $x = 0.4$

QP’s at antinode
- No QP’s for $x = 0.4$
- Data: $x = 0.36, 0.38, 0.4$

Colorado Z. Sun et al. PRL (2006)

ARPES of 2L manganites: status quo

Metallicity above T_c (phase separation)
- Data: $x = 0.38$, AB band

Crystal characterisation: x=0.36

LEED image (T= 40K, 95eV) of cleaved LSMO (x= 0.36) surface

- sharp transitions, excellent cleavage surfaces

Hunting down the QP’s

- low energy spectral weight all round the AB Fermi surface

S. de Jong et al. 2006

$\nu=56\text{eV}$
Energy distribution curves

- note:
 'QPs' at all k_F's for LSMO

k_F-EDCs

Intensity (arb. units)

1 2 3 4 5 6 7

Binding energy (eV)

1.0 0.5 0.0 0.0 0.1 0.2

$\nu\nu = 56\text{eV}$

peaks not yet resolution limited......

μ - ARPES: AB band (at the SLS)

$\nu\nu = 56\text{eV}$

at $(\pi/a,0)$

antibonding band:
sharp QP, resolution limited width

S. de Jong et al. 2006
bonding band:
\[E_F \text{ MDC width (0.07 } \pi/a \text{) is double that of the AB band} \]

What about the BZ diagonal?

- AB band
- B band
- Zone diagonal

FWHM
- 0.035 \(\pi/a \)
- 0.07 \(\pi/a \)
- 0.1 \(\pi/a \)

Binding energy (eV): 56 eV, 73 eV, 56 eV

Intensity (arb. units): 0.0, 0.0, 0.0
for $x=0.36$:

- QP's visible for:
 - AB FS at $(\pi/a,0)$ and zone diagonal
 - and for BB FS at $(\pi/a,0)$

Renormalisation effects at $(\pi/a,0)$

- coupling to collective (bosonic) mode(s):
 - clear deviation from non-interacting dispersion between 60 and 110meV
 - also seen in MDC width (\rightarrow QP inverse life-time)
Outline

- Intro. to colossal magneto-resistant maganites
 - bilayer systems: $\text{La}_{2-2x}\text{Sr}_{1+2x}\text{Mn}_3\text{O}_7$
- Angle-resolved photoemission data:
 - history, status quo
 - Fermi surfaces
 - quasiparticles
 - coupling to boson mode(s)
 - surprises in the temperature dependence
- Summary, conclusions and outlook

Temperature dependence at $(\pi/a,0)$

- $T_C=130\text{K}$
- $\text{BE} (\text{eV})$ vs. $\text{BE} (\text{eV})$
- $\text{BE} (\text{eV})$ vs. $\text{BE} (\text{eV})$
- $\text{BE} (\text{eV})$ vs. $\text{BE} (\text{eV})$
T-dependence: renormalisation effects ($\pi/a,0$)

![Graph](image1.png)

E-E_F (eV)

- Peak position (k_y) MDC FWHM (π/a)
- MDC FWHM (π/a)

T-values:
- $T=30$
- $T=95$
- $T=145$

Notes:
- $h\nu=56\text{eV}$
- At ($\pi/a,0$)

T-dependence: MDC width at ($\pi/a,0$)

![Graph](image2.png)

E-E_F (eV)

- Strong T-dependence for low energies
- Change in form within FM-M phase ($30 \rightarrow 95\text{K}$)

T-values:
- $T=30$
- $T=95$
- $T=145$

Notes:
- $h\nu=56\text{eV}$
- At ($\pi/a,0$)
T-dependence: at $(\pi/a,0)$ and BZ diagonal

Image showing energy bands at $30\,K$, $95\,K$, and $145\,K$.

T_c is marked as the critical temperature.

$\nu = 56\,eV$

S. de Jong et al. 2006

T-dependence: k_F EDC's at $(\pi/a,0)$ and BZ diagonal

Image showing energy distribution with k_F dependence.

Giant temperature dependence, k-dependent.

QP peak more robust at antinodes.

Spectral weight shift even larger at nodes.

S. de Jong et al. 2006
T-dependence: metallic phase above T_c?

- Two phase model doesn't work here
 - QP peak only for $T<T_c$
 - Different high E behaviour for the two k-points

Conclusions

- Quasiparticles are to be found on both the AB (at zone face and diagonal) and BB Fermi surfaces for $x = 0.36$
- No such thing as a (general) nodal metal
- Strong renormalisation effects clearly identified:
 - Phonon-orbitons
 - Strongly T-dep.: magnetism (analysis underway)
- Anomalous temperature dependence:
 - huge shifts of spectral weight
 - Can't fit a 2-phase model
Glimpse of something hot off the beamline......

$\nu = 56\text{eV}$

S. de Jong et al. 2007

Glimpse 2

$\nu = 73\text{eV}$

S. de Jong et al. 2007
? possible breakdown of 100% spin polarisation ?

\[\nu = 73 \text{eV} \]

\[\text{Glimpse 2} \]

S. de Jong et al. 2007
The Credits

Quantum Electron Matter Group, University of Amsterdam
Sanne de Jong, Yingkai Huang, Wing Kiu Siu, Iman Santoso, Wim Koops,
Freek Massee, Ton Gortenmulder

SLS
Vladimir Strocov, Luc Patthey, Ming Shi

Support at BESSY
Rolf Follath, Patrick Bressler
Olaf Schwarzkopf

Funding
FOM, EU, UvA

The Credits

Yingkai Huang

Sanne de Jong