Broken symmetry and spin-split bands at surfaces

Marco Grioni

CORPES07 - Dresden

FONDS NATIONAL SUISSE SCHWEIZERISCHER NATIONALFONDS FONDO NAZIONALE SVIZZERO SWISS NATIONAL SCIENCE FOUNDATION

On the positive side...

- Different ground states may be stable at the surface due to differences in the strength of interactions, dimensionality, symmetry
- surfaces as tuneable model systems

A case of symmetry breaking at surfaces

1. $E(k,\uparrow) = E(-k,\downarrow)$ time-reversal symmetry 2. $E(k,\uparrow) = E(-k,\uparrow)$ inversion symmetry

1+2. $E(k,\uparrow) = E(k,\downarrow)$ Kramers' degeneracy

at an interface, or at the surface of a solid, inversion symmetry is broken. With SO interaction:

 $\mathsf{E}(k,\uparrow)\neq\mathsf{E}(k,\downarrow)$

even without an external magnetic field

2D free-electrons - the Rashba effect now also observed in $1D \rightarrow talk$ by F.Himpsel

2D free electrons moving in an E field

$$\vec{E} = -\nabla V = -\frac{dV}{dz}\vec{e}_z$$

"see" a magnetic field

$$\vec{B}_{eff} = \frac{1}{c^2} \vec{v} \times \vec{E} = \frac{\hbar}{m^* c^2} \vec{k} \times \vec{E}$$

$$-k \xrightarrow{B_{eff}} \nabla V$$

Zeeman coupling

$$H_{SOC} \approx -\vec{\mu}_S \cdot \vec{B} = \alpha_R (\vec{e}_z \times \vec{p}) \cdot \sigma$$

expected Rashba energy $E_R \sim 10^{-6} \text{ eV}!$

$$E = \frac{\hbar^2 k^2}{2m^*} \pm \alpha_R k$$
$$\alpha_R = \frac{\hbar^2 k_0}{m^*}$$
$$E_R = |E(\pm k_0)|$$

rotational invariance

Influence of atomic parameters: TB approach

The E field is largest near the nuclei

The intra-atomic SO interaction MUST be important

 $\alpha_R \approx \alpha_{AT} \cdot (\frac{dV}{dz})$

SO split TB bands

intra-atomic SO parameter surface term

Much larger splittings are then possible

Petersen and Hedegård (2000)

Shockley states at the surface of noble metals

Ag (111)

 $k_0 = 0.012 \text{ Å}^{-1}; \ \alpha_R = 0.33 \text{ eV Å}$

Au(111)

 $E_{R} \sim 2 \text{ meV}; \quad \Delta E_{SO} = 470 \text{ meV}$

Ag(111)

 $k_0 < 0.004 \text{ Å}^{-1}; \ \alpha_R \sim 0.03 \text{ eV Å}$ $\mathbf{E}_{\mathbf{R}} < 0.2 \text{ meV}; \ \Delta \mathbf{E}_{SO} = 110 \text{ meV}$

Reinert (2001)

Strategies to enhance the SO splitting

Modifying the surface barrier

Alkali adsorption Rotenberg (1999)

Rare-gas adsorption

Moreschini et al., to be published (Lausanne-Würzburg)

Alloying

Au/Ag (disordered) alloy

Other high-Z metals

Bi(111)

 $k_0 \sim 0.05 \text{ Å}^{-1}$ $\Delta E_{SO} = 1.5 \text{ eV}$ (Z = 83)

An ordered surface alloy: Pb/Ag(111)

The deposition and reaction of 1/3 ML Pb yields an ordered PbAg₂ surface alloy

Dalmas (2005)

What is the origin of the huge enhancement?

 $k_0 = 0.13 \text{ Å}^{-1}; \alpha_{\rm B} \sim 3 \text{ eV Å};$ $E_{\rm B} = 200 \text{ meV}$

Au(111): $k_0 = 0.012 \text{ Å}^{-1}$; $\alpha_{\rm B} = 0.33 \text{ eV} \text{ Å}$; $E_{R} \sim 2 \text{ meV}$

Bi(111): $k_0 = 0.05 \text{ Å}^{-1}$; $\alpha_B = 0.56 \text{ eV Å}$; $E_{\rm B} = 14 \text{ meV}$

dichroism in the angular distribution

Fully relativistic layer KKR calculation - J. Henk also G. Bihlmayer (PRB 2007)

The hybrid states are tightly confined within the top layer

Unlike the case of Au(111), the spin-split FS is clearly influenced by the crystal potential

More realistic

05

Non-circular Fermi surface

Out-of-normal component (10%) of the spin polarization demonstrates an in-plane potential gradient

The inhomogeneous charge distribution within the surface alloy is the origin of the in-plane gradient

Chemical bonding is a new "knob" to tune the spin splitting

Spin splitting and the density of states

Signatures of spin-split states in tunneling spectra

Bi/Ag(111)

Pb/Ag(111)

0.5 -0.5 Energy (eV) (va) 0.0 0.0 -0.5 -0.5 -10 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.00 -0.20 -0.10 0.10 Wave vector k (Å-1) Wave vector k (Å-1) (d) (c) Energy E Π Density of States Wave vector k

"1D-like DOS"

STS: MPI Stuttgart

1.0

Bi_xPb_(1-x)

0.8

0.6

Х

0.12

0.08

0.04

Ο

0.2

0.4

Internal calibration from core levels

Adjusting the spin pattern by interface engineering The spin pattern depends Band Maximum on the energy 21 20 Three different situations are 19 realized by tuning E_F through (sqrt 3xsqrt3)R30° Bi Bi coverage: 0.33 ML 18 the band as a function of stoichiometry 20 30 40 50 60 10 Region 21.0 в Α 20.5 20.0 19.5 ш Bi: 0.24 ML Energy Pb: 0.09 ML 19.0 _____ 10 0 20 30 40 50 60 Π Region II 21.5 -21.0 -Wave vector k Density of States 20.5 -20.0 19.5 -Bi: 0.09 ML Pb: 0.24 ML 19.0 -***** 10 0 20 40 50 60 30

The true surface structure is crucial

-1.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.40 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 ky (1/ Bohr) ky (1/ Bohr)

J. Henk

The Pb p_z band is disrupted. Spectral weight is spread in E and k

moiré structure ≈ √28 x √28 R(±19.1°) 19 Pb ATOMS, 28 Ag ATOMS

Selective hybridization with bulk via the Ag SS

TB bands for the modulated structure Gloor (2006)

- 1) Pb p_z states hybridize with the Ag surface band and, through this, with bulk states.
- 2) The mixed state is degenerate with the continuum of bulk states. For each *k* value, it is an *impurity problem*.

Selective hybridization with bulk via the Ag SS

Summary

 Enhanced correlations and lower symmetry lead to different ground states at surfaces.
Ideal playground for ARPES practitioners

 Interface engineering to tune spin splitting and spin configuration