## Polaron formation in cuprates

Olle Gunnarsson

- 1. Polaronic behavior in undoped cuprates.
  - a. Is the electron-phonon interaction strong enough?
  - b. Can we describe the photoemission line shape?
- 2. Does the Coulomb interaction enhance or suppress the electron-phonon interaction?

Large difference between electrons and phonons.

Cooperation: Oliver Rösch, Giorgio Sangiovanni, Erik Koch, Claudio Castellani and Massimo Capone.



Max-Planck Institut, Stuttgart, Germany

## Important effects of electron-phonon coupling

- Photoemission: Kink in nodal direction.
- Photoemission: Polaron formation in undoped cuprates.
- Strong softening, broadening of half-breathing and apical phonons.
- Scanning tunneling microscopy. Isotope effect.



## Models

Coulomb interaction important. Here use Hubbard or t-J models.

Breathing and apical phonons: Coupling to level energies >> coupling to hopping integrals.  $\Rightarrow g(\mathbf{k}, \mathbf{q}) \approx g(\mathbf{q}).$ 



Rösch and Gunnarsson, PRL 92, 146403 (2004).



### **Photoemission.** Polarons



### **Polaronic behavior**



Spectrum very broad (insulator: no electron-hole pair exc.)

Shape Gaussian, not like a quasi-particle.

Chemical potential always well above broad peak A, although expected to be anywhere in the gap (sample preparation). Polarons: Quasi-particle ( $\approx$  0 weight). Broad boson side band.

Strong coupling to bosons. Phonons, spin fluctuations?

## Electron-phonon coupl. Undoped system. Shell model

Find the electron-phonon coupling strength to carriers (t-J model).

- 1. Use a shell model (Pintschovius) to describe electrostatic coupling.
- Phonon eigenvectors  $\Rightarrow$  Potential on a carrier due to a phonon.
- Screening by the "shells", but otherwise no screening.
- LDA too effective screening.
- 2. Add coupling due to modulation of hopping integrals.



## Electron-phonon coupling strength. La $_2$ CuO $_4$

$$\begin{split} H_{ep} &= \frac{1}{\sqrt{N}} \sum_{\mathbf{q}\nu i} M_{\mathbf{q}\nu i} (1 - n_i) (b_{\mathbf{q}\nu} + b_{-\mathbf{q}\nu}^{\dagger}) \\ \text{Dimensionless coupling } \lambda &= 2 \frac{1}{8t} \sum_{\mathbf{q}\nu} \frac{|M_{\mathbf{q}\nu}|^2}{\omega_{\mathbf{q}\nu}}. \end{split}$$
  $\begin{aligned} \text{Calculations: } \lambda &= 1.2. \\ \text{(Half-)breathing (80 meV), } O_z \text{ (60-70 meV), La} \\ \text{(Cu) modes (20 meV).} \end{aligned}$ 



Hubbard-Holstein: Polarons for  $\lambda > 0.55$ 

Sangiovanni, Gunnarsson, Koch, Castel-Iani, Capone, PRL **97**, 046404 (2006).

#### Sufficient to put undoped cuprates well into the polaronic regime.

Rösch, Gunnarsson, Zhou, Yoshida, Sasagawa, Fujimori, Hussain, Shen, Uchida, PRL **95**, 227002 (2005).



Stuttgart \_\_\_\_

### **Experimental PES for La\_2CuO\_4**



### Width of phonon side-band. $La_2CuO_4$



Exact diagonalization.  $4 \times 4$  cluster. t-J model. Nearest neighbor hopping. 21 modes. q-dependent coupl. 50 000 samples. Peak heights aligned.

Exp.: Width  $\sim$  0.48 eV. Binding energy  $\sim$  0.5 eV.

Reduction of coupling constants by factor 0.8 ( $\lambda = 0.75$ )  $\Rightarrow$ 

Width 0.4 eV, Bind. energy 0.6 eV, in rather good agreement with exp.

Rösch, Gunnarsson, Zhou, Yoshida, Sasagawa, Fujimori, Hussain, Shen, Uchida, PRL 95, 227002.

## **Coulomb suppression of electron-phonon inter.?**

Strong Coulomb repulsion suppresses charge fluctuations, in particular in weak doping limit.

 $\mathbf{H_{ep}} = \sum_{\mathbf{n}\mu} \mathbf{g}_{\mathbf{n}\mu\mu} \mathbf{c}^{\dagger}_{\mu} \mathbf{c}_{\mu} (\mathbf{b}_{\mathbf{n}} + \mathbf{b}^{\dagger}_{\mathbf{n}}).$ 

Important phonons couple to charge fluctuations.

Suppression of electron-phonon interaction?

Paramagnetic dynamical mean-field theory (P-DMFT):

Very strong suppression.

But: Spin correlations enhance electron-phonon interaction?



# Sum rules. t-J-Holstein model

#### **Phonon self-energy**

$$\frac{1}{\pi N} \sum_{\mathbf{q}\neq 0} \frac{1}{g_{\mathbf{q}}^2} \int_{-\infty}^{\infty} |\mathrm{Im}\Pi(\mathbf{q},\omega)| d\omega \approx 2\delta(1-\delta). \quad \text{(Khaliullin, Horsch)}$$

As  $\delta(\text{doping}) \to 0$ ,  $\Pi \to 0$ . Suppression by Coulomb interaction.

#### **Electron self-energy**

Undoped model.  $\Sigma_{ep} = \Sigma - \Sigma(g=0)$ :

$$\frac{1}{\pi} \int_{-\infty}^{\infty} \mathrm{Im} \Sigma_{ep}(\mathbf{k}, \omega - i0^{+}) d\omega = \frac{1}{N} \sum_{\mathbf{q}} |g_{\mathbf{q}}|^{2} \equiv \bar{g}^{2}.$$

Identical to the lowest order result for noninteracting electrons. In contrast to phonon self-energy, correlation does not suppress  $\Sigma_{ep}$ .

 $\Sigma$  describes creation of a hole, which interacts strongly with phonons.

O. Rösch and O. Gunnarsson, PRL 93, 237001 (2004).



Stuttgart \_\_\_\_\_

## Paramagnetic DMFT. Hubbard-Holstein model

P-DMFT: Strong suppression of electron-phonon inter. Half-filling: Only mechanism for Mott insulator:  $Z \rightarrow 0$ . Lowest order self-energy:  $\Sigma_{ep} \sim GD$ If Z small, strong suppression of  $\Sigma_{ep}$ , since incoherent G

Electron-phonon interaction strongly suppressed because  $Z \rightarrow 0$ .

Allowing for antiferromagnetism, insulator possible without  $Z \rightarrow 0$ .

Less strong suppression of electron-phonon interaction?



Stuttgart -

## **Antiferromagnetic DMFT**

 $\begin{array}{l} \text{P-DMFT:} \ \Sigma_{\sigma}(\mathbf{k},\omega) \equiv \Sigma(\omega) \Rightarrow \Sigma_{ij\sigma} = \delta_{ij}\Sigma(\omega). \\ \\ \text{AF-DMFT:} \ \Sigma_{ij\sigma}(\omega) \equiv \delta_{ij} \times \begin{cases} \Sigma_{\uparrow}(\omega), & \text{if } \sigma \text{ majority spin on site } i, \\ \Sigma_{\downarrow}(\omega), & \text{if } \sigma \text{ minority spin on site } i. \end{cases} \end{array}$ 

Impurity coupled to self-consistent spin-polarized bath.

Bethe lattice (semi-elliptical DOS).

Impurity model solved using exact diagonalization.

Possible to treat doped systems.



### **Quasiparticle strength. Undoped system.**



Reasonable values for Z in AF-DMFT but not in P-DMFT.

 $\Rightarrow$  Good description of electron-phonon coupling?



# Polaron formation. Dependence on ${\cal U}$



U moderately hurts polaron formation, but far less than in P-DMFT.

Crucial to include AF correlations.



Stuttgart

15

### **Doping dependence**



AF-DMFT: Incr. doping  $\Rightarrow$  Reduced magnetization  $\Rightarrow$  Incr.  $\lambda_c$ . P-DMFT: Increased doping  $\Rightarrow$  Reduced (but very large)  $\lambda_c$ . Exp.: Doping suppresses polaron formation. AF-P transition at much too large doping due to neglect of AF correlations in P state (use cluster methods, introduce n.n. hopping). Macridin, Moritz, Jarrel, Maier, PRL **97**, 056402 (2006).

16

## **Softening of phonons**



Phonon soft. strongly suppressed by U. Suppression reduced with  $\delta$ .

Electron prop. moderately suppressed. Suppression increases with  $\delta$ . In agreement with sum rules. Strong property dependence.

### Coulomb int. vs. AF corr. (Photoemission)

#### **Effects of Coulomb interaction**

Compare correlated system with half-filled Holstein model.

Allows us to turn up  ${\boldsymbol U}$  without changing anything else.

#### Effects of antiferromagnetic correlations

Compare full solution (with antiferromag. correl.) with ferromag. state.

Photoemission for undoped ferromagnetic system  $\Rightarrow$  One hole.

Ferromag. state with one hole  $\equiv$  Holstein model with one electron.



Total effect of  $U \Rightarrow$  suppression. AF  $\Rightarrow$  enhancement of el.-ph. int.

## Holstein model. Polaron formation

Half-filled model versus one electron at bottom of band.

Compare states with perfectly itinerant electrons and perfectly localized electrons.

Energy per electron:

| System       | Itinerant          | Localized             |
|--------------|--------------------|-----------------------|
| One electron | <b>-4</b> <i>t</i> | $-g^2/\omega_{ m ph}$ |
| Half-filled  | -1.7t              | $-g^2/\omega_{ m ph}$ |

Harder to form polaron in one-electron case.

Hopping energy maximum for one electron at bottom of band.



#### Phonons vs. magnons

Self-consistent Born approx.: Phonons, magnons treated as bosons.

 $\lambda = \frac{1}{N^2} \sum_{\mathbf{kq}} \frac{M_{\mathbf{kq}}^2}{8t\omega_{\mathbf{q}}}$ . Magnons:  $\lambda_M = \frac{t}{2J}$ .  $\frac{J}{I} = 0.3 \Rightarrow \lambda_M = 1.67.$  La<sub>2</sub>CuO<sub>4</sub>:  $\lambda_{\rm ph} \approx 1.2 < \lambda_M!$ Why not polarons due to magnons? QMC, Exact diag. t-J model: No polarons. Crossing phonon line diagrams crucial for polarons. Many classes of crossing magnon line diagrams zero due to symmetry of coupling. No polarons caused by magnons alone.

Alternative explanation: Spin 1/2 syst. Spin can only be flipped once. Magnons not bosons.



Symmetry of magnon coupl.  $\Rightarrow 0.$ 

# How are coupling constants influenced by $U\ensuremath{?}$

So far, studied Hubbard-Holstein model with *fixed* coupling constants.

But where do the coupling constants come from?

#### Half-breathing phonon

Three-band model: One Cu 3d and two O 2p orbitals.  $\Rightarrow$  One-band model with Zhang-Rice singlet. Coupling *constants* enhanced by U.

Rösch and Gunnarsson, PRB 70, 224518 (2004).

#### Apical oxygen modes

Strong electrostatic coupling due to net charge of oxygen ions.

U = 0: Efficient screening strongly reduces coupling.

Large U: Screening strongly reduced. Stronger coupling.



Stuttgart -

# Summary

- El.-ph. coupl. strong enough to give polarons for undoped cuprates.
- Reasonable PES line shape for undoped cuprates.

Hubbard-Holstein model. Fixed coupling constants.

- Antiferromagnetic correlation crucial for el.-ph. coupling.
- $\bullet~U$  moderately suppresses el.-ph. coupl. for electronic properties.
- $\bullet~U$  strongly suppresses el.-ph. coupl. for phonon properties.
- Opposite doping dependencies for electrons and phonons.
- Trends described by sum rules.

Coupling *constants* can be enhanced by U.



Stuttgart -