
Polaron formation in cuprates

Olle Gunnarsson

1. Polaronic behavior in undoped cuprates.

a. Is the electron-phonon interaction strong enough?

b. Can we describe the photoemission line shape?

2. Does the Coulomb interaction enhance or suppress

the electron-phonon interaction?

Large difference between electrons and phonons.

Cooperation: Oliver Rösch, Giorgio Sangiovanni, Erik Koch,

Claudio Castellani and Massimo Capone.

Max-Planck Institut, Stuttgart, Germany
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Important effects of electron-phonon coupling

• Photoemission: Kink in nodal direction.

• Photoemission: Polaron formation in undoped cuprates.

• Strong softening, broadening of half-breathing and apical phonons.

• Scanning tunneling microscopy. Isotope effect.

MPI-FKF Stuttgart
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Models

Coulomb interaction important.

Here use Hubbard or t-J models.

Breathing and apical phonons:

Coupling to level energies >>

coupling to hopping integrals.

⇒ g(k,q) ≈ g(q).

Half-

breathing.

Apical.

Rösch and Gunnarsson, PRL 92, 146403 (2004).

MPI-FKF Stuttgart
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Photoemission. Polarons

H = ε0c
†c + gc†c(b + b†) + ωphb

†b.
Weak coupling
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Strong coupling:

Exponentially small quasi-particle weight (here criterion for polarons).

Broad, approximately Gaussian side band of phonon satellites.

MPI-FKF Stuttgart
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Polaronic behavior

Undoped

CaCuO2Cl2.

K.M. Shen et al.,

PRL 93, 267002

(2004).

Spectrum very broad (insulator: no electron-hole pair exc.)

Shape Gaussian, not like a quasi-particle.

Chemical potential always well above broad peak A, although

expected to be anywhere in the gap (sample preparation).

Polarons: Quasi-particle (≈ 0 weight). Broad boson side band.

Strong coupling to bosons. Phonons, spin fluctuations?
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Electron-phonon coupl. Undoped system. Shell model

Find the electron-phonon coupling strength to carriers (t-J model).

1. Use a shell model (Pintschovius) to describe electrostatic coupling.

Phonon eigenvectors ⇒ Potential on a carrier due to a phonon.

Screening by the ”shells”, but otherwise no screening.

LDA too effective screening.

2. Add coupling due to modulation of hopping integrals.

MPI-FKF Stuttgart
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Electron-phonon coupling strength. La 2CuO4

Hep = 1√
N

∑

qνi Mqνi(1 − ni)(bqν + b†−qν)

Dimensionless coupling λ = 2 1
8t

∑

qν

|Mqν |2
ωqν

.

Calculations: λ = 1.2.

(Half-)breathing (80 meV), Oz (60-70 meV), La

(Cu) modes (20 meV).
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Hubbard-Holstein:

Polarons for λ > 0.55

Sangiovanni, Gunnarsson, Koch, Castel-

lani, Capone, PRL 97, 046404 (2006).

Sufficient to put undoped cuprates well into the polaronic regime.

Rösch, Gunnarsson, Zhou, Yoshida, Sasagawa, Fujimori, Hussain, Shen, Uchida, PRL 95, 227002

(2005).

MPI-FKF Stuttgart
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Experimental PES for La 2CuO4
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Broad phonon side

band.

Width 0.48 eV.

MPI-FKF Stuttgart
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Width of phonon side-band. La 2CuO4
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Exact diagonalization.

4×4 cluster. t-J model.

Nearest neighbor hopping.

21 modes. q-dependent coupl.

50 000 samples.

Peak heights aligned.

Calc. width (π/2, π/2) ∼ 0.5 eV.

Exp.: Width ∼ 0.48 eV. Binding energy ∼ 0.5 eV.

Reduction of coupling constants by factor 0.8 (λ = 0.75) ⇒

Width 0.4 eV, Bind. energy 0.6 eV, in rather good agreement with exp.

Rösch, Gunnarsson, Zhou, Yoshida, Sasagawa, Fujimori, Hussain, Shen, Uchida, PRL 95, 227002.
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Coulomb suppression of electron-phonon inter.?

Strong Coulomb repulsion suppresses charge fluctuations,

in particular in weak doping limit.

Hep =
∑

nµ gnµµc
†
µcµ(bn + b†

n).

Important phonons couple to charge fluctuations.

Suppression of electron-phonon interaction?

Paramagnetic dynamical mean-field theory (P-DMFT):

Very strong suppression.

But: Spin correlations enhance electron-phonon interaction?

MPI-FKF Stuttgart
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Sum rules. t-J -Holstein model

Phonon self-energy

1

πN

∑

q6=0
1

g2
q

∫ ∞
−∞ |ImΠ(q, ω)|dω ≈ 2δ(1 − δ). (Khaliullin, Horsch)

As δ(doping) → 0, Π → 0. Suppression by Coulomb interaction.

Electron self-energy

Undoped model. Σep = Σ − Σ(g = 0):

1

π

∫ ∞
−∞ ImΣep(k, ω − i0+)dω = 1

N

∑

q |gq|
2 ≡ ḡ2.

Identical to the lowest order result for noninteracting electrons.

In contrast to phonon self-energy, correlation does not suppress Σep.

Σ describes creation of a hole, which interacts strongly with phonons.

O. Rösch and O. Gunnarsson, PRL 93, 237001 (2004).

MPI-FKF Stuttgart

11



Paramagnetic DMFT. Hubbard-Holstein model

P-DMFT: Strong suppression of electron-phonon inter.

Half-filling: Only mechanism for Mott insulator: Z → 0.

Lowest order self-energy: Σep ∼ GD

If Z small, strong suppression of Σep, since incoherent

weight enters with a large energy denominator.
G

D

Electron-phonon interaction strongly suppressed because Z → 0.

Allowing for antiferromagnetism, insulator possible without Z → 0.

Less strong suppression of electron-phonon interaction?

MPI-FKF Stuttgart
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Antiferromagnetic DMFT

P-DMFT: Σσ(k, ω) ≡ Σ(ω) ⇒ Σijσ = δijΣ(ω).

AF-DMFT: Σijσ(ω) ≡ δij ×

{

Σ↑(ω), if σ majority spin on site i,

Σ↓(ω), if σ minority spin on site i.

Impurity coupled to self-consistent spin-polarized bath.

Bethe lattice (semi-elliptical DOS).

Impurity model solved using exact diagonalization.

Possible to treat doped systems.

MPI-FKF Stuttgart
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Quasiparticle strength. Undoped system.
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D= Half band width.
Sangiovanni, Gunnarsson, Koch,

Castellani, Capone, PRL 97, 046404 (2006).

Reasonable values for Z in AF-DMFT but not in P-DMFT.

⇒ Good description of electron-phonon coupling?

MPI-FKF Stuttgart
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Polaron formation. Dependence on U
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Half-filled Holstein-Hubbard

model. 2d system.

ω0=0.025D; λ = 2g2

ω0W
.

ω0=0.1t=0.04 eV.
Sangiovanni, Gunnarsson, Koch,

Castellani, Capone, PRL 97, 046404 (2006).

U moderately hurts polaron formation, but far less than in P-DMFT.

Crucial to include AF correlations.

MPI-FKF Stuttgart
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Doping dependence
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2d Holstein-Hubbard model.

ω0=0.025D; U=3.5D;
J
t
=0.29.

Sangiovanni, Gunnarsson, Koch, Castella-

ni, Capone, PRL 97, 046404 (2006).

AF-DMFT: Incr. doping ⇒ Reduced magnetization ⇒ Incr. λc.

P-DMFT: Increased doping ⇒ Reduced (but very large) λc.

Exp.: Doping suppresses polaron formation.

AF-P transition at much too large doping due to neglect of AF

correlations in P state (use cluster methods, introduce n.n. hopping).

Macridin, Moritz, Jarrel, Maier, PRL 97, 056402 (2006).
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Softening of phonons

U=0.35D
δ=0

a) λ=0.01
λ=0.05
λ=.125
λ=0.25

.15.10.05.00

ω/D

U=1.7D
δ=0

b) λ=.01
λ=.25
λ=.50
λ=.80

U=3.5D
δ=0

c) λ=.01
λ=.25
λ=.50
λ=1.0

.20.15.10.05.00

ω/D

U=5D
λ=0.5

d) δ=.01
δ=.05
δ=.10
δ=.14
δ=.18

a) U small:

Large softening.

b)+c): U large, half-

filling: Small softening.

d) Doping increased

⇒ Increased softening.

Phonon soft. strongly suppressed by U . Suppression reduced with δ.

Electron prop. moderately suppressed. Suppression increases with δ.

In agreement with sum rules. Strong property dependence.
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Coulomb int. vs. AF corr. (Photoemission)

Effects of Coulomb interaction

Compare correlated system with half-filled Holstein model.

Allows us to turn up U without changing anything else.

Effects of antiferromagnetic correlations

Compare full solution (with antiferromag. correl.) with ferromag. state.

Photoemission for undoped ferromagnetic system ⇒ One hole.

Ferromag. state with one hole ≡ Holstein model with one electron.

λ
Half
U=0 U large

0 1

U AF

Half
c

(AF) Half(F)
U large

Total effect of U ⇒ suppression. AF ⇒ enhancement of el.-ph. int.
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Holstein model. Polaron formation

Half-filled model versus one electron at bottom of band.

Compare states with perfectly itinerant electrons and perfectly

localized electrons.

Energy per electron:

System Itinerant Localized

One electron -4t −g2/ωph

Half-filled -1.7t −g2/ωph

Harder to form polaron in one-electron case.

Hopping energy maximum for one electron at bottom of band.

MPI-FKF Stuttgart
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Phonons vs. magnons

Self-consistent Born approx.: Phonons, magnons treated as bosons.

λ = 1

N2

∑

kq

M2

kq

8tωq
. Magnons: λM = t

2J
.

J
t

= 0.3 ⇒ λM = 1.67. La2CuO4: λph ≈ 1.2 < λM !

Why not polarons due to magnons?

QMC, Exact diag. t-J model: No polarons.

Crossing phonon line diagrams crucial for polarons.

Many classes of crossing magnon line diagrams ze-

ro due to symmetry of coupling.

No polarons caused by magnons alone.

Alternative explanation: Spin 1/2 syst. Spin can only

be flipped once. Magnons not bosons.

G

Symmetry of

magnon coupl.

⇒ 0.
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How are coupling constants influenced by U?

So far, studied Hubbard-Holstein model with fixed coupling constants.

But where do the coupling constants come from?

Half-breathing phonon

Three-band model: One Cu 3d and two O 2p orbitals. ⇒ One-band

model with Zhang-Rice singlet. Coupling constants enhanced by U .

Rösch and Gunnarsson, PRB 70, 224518 (2004).

Apical oxygen modes

Strong electrostatic coupling due to net charge of oxygen ions.

U = 0: Efficient screening strongly reduces coupling.

Large U : Screening strongly reduced. Stronger coupling.

MPI-FKF Stuttgart
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Summary

• El.-ph. coupl. strong enough to give polarons for undoped cuprates.

• Reasonable PES line shape for undoped cuprates.

Hubbard-Holstein model. Fixed coupling constants.

• Antiferromagnetic correlation crucial for el.-ph. coupling.

• U moderately suppresses el.-ph. coupl. for electronic properties.

• U strongly suppresses el.-ph. coupl. for phonon properties.

• Opposite doping dependencies for electrons and phonons.

• Trends described by sum rules.

Coupling constants can be enhanced by U .

MPI-FKF Stuttgart
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