(Brief) Review of the techniques and of recent progress in laser-based photoelectron spectroscopy

> Matthias Hengsberger Physik-Institut der Universität Zürich

International Seminar on Strong Correlations and Angle-Resolved Photoemission Spectroscopy CORPES 07 - MPIPKS Dresden May 7, 2007

Short history of photoemission with laser light sources:

- o spectroscopy of occupied and unoccupied states
- o time-resolved experiments: dynamics of hot electrons
- o two-photon photoemission
- o extreme time resolution: attosecond dynamics
- o extreme energy resolution and "bulk sensitivity"
- o conclusion

spectroscopy of occupied and unoccupied states

- (angle-resolved) multi-photon photoemission
- how to disentangle contribution of the various states
- spectroscopy at high momentum resolution
- transition dipole moment
- technical issue: space-charge effects

angle-resolved photoelectron spectroscopy

 $hv = 5 \text{ eV} \sim 1 \text{ keV}$ (up to 8 keV for angle-integrated PES)

measurement:

photoelectron current as function of

- 1. kinetic energy \rightarrow binding energy E-E_F
- 2. emission angle \rightarrow momentum **k**
- 3. spin \rightarrow spin polarization \mathbf{P}_{S}

band structure E(k) and Fermi surface $k(E_F)$

photoelectron spectroscopy with pulsed laser light

- → advantage of pulsed light sources: high peak intensity
- \rightarrow reasonable cross-sections for multi-photon processes:

2PPE or two-photon-photoemission

on how to disentangle initial and intermediate states

A initial state features move with $h\upsilon_1 + h\upsilon_2$

B intermediate state peaks move with hv_2

C "energy pooling" do not move (Auger-like process)

see e.g. Giessen et al., PRL 55, 300 (1985) W. Steinmann, Appl. Phys. A 49, 365 (1989)

angle-resolved 2PPE

o assuming free-electron final state model (not trivial at low energy!)
o band- and Fermi surface mapping possible by scanning reciprocal space
o condition: no intermediate state available!

M. Hengsberger, F. Baumberger et al., unpublished

Surface Physics Group, Physics-Institute, U Zurich

cross-section: one- vs. two-photon photoemission

- direct comparison at high temperature (845 K)
- sample workfunction 3.6 eV, photon energy 3.15 eV

polarization dependence: transition dipoles

orientation of transition dipoles yields information about state symmetries

M. Hengsberger, F. Baumberger et al. see e.g. Wolf et al., Phys. Rev. B 59 (1999)

a parenthesis: (space-charge problems

- many electrons within one single 100 fs-pulse interact
- distortions of energy spectrum and angular distribution

laser-PES: Passlack et al., J. Appl. Phys. 100, 024912 (2006) for synchrotron experiments see Zhou et al., J. El. Spec. Rel. Phen. 142, 27 (2005)

simple model: space charge in pulsed experiments

emission of thousands of photoelectrons within typ. 100 fs leads to significant space charge current of the order of mA !

first observation: decreasing efficiency of the PE process

space charge : chirp during drift

numerical solution of the equation of motion of a N-electron pulse: Siwick et al., J Appl. Phys. 92, 1643 (2002)

multi-photon PE at high laser intensities

- laser: regenerative amplifier, fluence about 4 mJ/cm², hv=1.55 eV
- sample: h-BN/Ni(111)
- higher order transition (3PPE) and (4PPE)

space charge induced broadening) - parenthesis closed

broadening scales with square root of the number of electrons (photocurrent) in agreement with Passlack et al., J. Appl. Phys. 100, 024912 (2006)

D. Leuenberger, Master Thesis, U Zürich, 2007

time-resolved experiments: dynamics of hot electrons

- study of lifetimes of excited states
- high excitation density
- (thermo-)dynamics of the hot electron gas
- timescales of electron-electron and electron-phonon scattering

pump-probe scheme

observable: f. ex. photoelectrons generated by probe pulse time resolution: cross-correlation of pump and probe pulses temporal jitter: none here

typical setup: our laboratory

Surface Physics Group, Physics-Institute, U Zurich

time-resolved 2PPE

- \rightarrow introduce variable time delay between first and second pulse
- \rightarrow in case of intermediate state, the excited population decays exponentially with a typical time constant τ after the first pulse

extracting lifetimes from the transient intensities

if temporal pulse profiles (or cross-correlation) are known, the transients can be deconvoluted \rightarrow direct access to decay constant

Höfer et al., Science 277, 1480 (1997)

effects of hot carrier diffusion

excited carriers diffuse towards bulk: apparently faster population decay solution: thin film samples

M. Aeschlimann et al., Appl. Phys. A 71, 1 (2000)

Auger-like cascade processes

in the secondary tail of 2PPE spectra, long lifetimes can be observed from states indirectly filled "from above" by inelastic scattering of highly excited electrons \rightarrow Fermi-liquid like behaviour

Aeschlimann, Appl. Phys. A 71, 1 (2000)

Hertel et al., Phys.Rev. Lett. 76, 535 (1996)

spin-dependent lifetimes

lifetimes and mean-free path depend on number of available empty states \rightarrow minority spin carriers have shorter lifetimes (important for spintronics)

Bauer and Aeschlimann, J.El.Spec. 2002 more recently: Schmidt et al., Phys. Rev. Lett. 95, 107402 (2005)

time-resolved one-photon photoemission

consists of triggering a system by a pump pulse and probing with a vuvprobe pulse (1PPE process) - vuv-pulses are produced by high-harmonic generation

Bauer and Aeschlimann, J.El.Spec. 2002

M. Drescher et al., Science 291, 1923 (2001)

Surface Physics Group, Physics-Institute, U Zurich

time-resolved 1PPE from molecules (gas phase)

chemical reaction kinetics in gas phase observed by 1PPE:

ultrafast cis-trans conversion in all-trans-2,4,6,8-decatetraene $C_{10}H_{14}$ promoted by vibrational motion (*photoisomerization*)

V. Blanchet et al., Nature 401, 52 (1999)

chemical reaction kinetics on surfaces

O2/Pt(111) at 77 K (high harmonic H27, 42 eV) oxygen is excited by hot electron transfer from substrate and changes orientation (550 fs, transient peroxo phase), reflected in peak at 6 eV

M. Bauer et al., Phys. Rev. Lett. 87, 025501 (2001)

light-solid interaction: what happens after pump pulse ?

e.g. M. Bonn et al., Phys. Rev. B 61, 1101 (2000)

Surface Physics Group, Physics-Institute, U Zurich

measurement of electron (thermo-)dynamics

after thermalization of hot-electron distribution (thermodynamic equilibrium after ca. 100 fs), the Fermi edge can be used as ultrafast electron thermometer

Fann et al., Phys. Rev. Lett. 68, 2834 (1992)

time-resolved photoelectron spectroscopy

- electrons promoted into unoccupied states by pump pulse
- thermodynamic equilibrium (Fermi-Dirac distribution) within 100 fs
- energy dissipation by scattering events:
 - electron-electron interaction, typ. 10-100 fs
 - optical phonons typ. 500-1000 fs
 - acoustic phonons typ. 1-10 ps

Bovensiepen, J. Phys.: Cond. Mat. 19, 083201 (2007)

example: ultrafast demagnetization

 macroscopic magnetization significantly reduced (>50%) after absorption of an intense laser pulse in thin nickel films
 Beaurepaire et al., Phys. Rev. Lett. 76, 4250 (1996)

- mostly magneto-optical measurements
- electron gas from equilibrium:

Kerr effect still representative of magnetization?

Koopmans et al., Phys. Rev. Lett. 95, 267207 (2005)

TR-PES and ultrafast demagnetization

time-resolved photoemission: exchange splitting vanishes within 300 fs

further experiments:

Gd(0001)/W: Bovensiepen et al., Phys. Rev. Lett. 95, 137402 (2005) TR-MOKE J. Phys.: Cond. Mat. 19, 083201 (2007) TR-PES Co/Cu(001): Cinchetti et al., Phys. Rev. Lett. 97, 177201 (2006) TR-PES

Surface Physics Group, Physics-Institute, U Zurich

extreme time resolution: attosecond dynamics

- broad-band laser light: ultrashort pulses
- high-harmonic generation
- how to perform an "attosecond experiment"
- case study: photoemission vs. Auger excitation
- approaching the timescale of the photoemission process?

extreme time resolution: techniques

idea of the experiment:

measure timescale of Auger excitation after photoemission process

sampling technique:

- emitted electrons experience acceleration depending on the phase and amplitude of the light field (5 fs, 800 nm)
- integration of the action over the light pulse duration leads to spectral shift and broadening depending on photohole lifetime

extreme time resolution: core hole lifetime

results:

Auger electron emission delayed \rightarrow Auger M d5/2 core hole lifetime 7.9 fs \rightarrow photoelectrons (4p) follow pulse shape of the NIR pulse and give clock zero

Drescher at al., Nature 419, 803 (2002)

Surface Physics Group, Physics-Institute, U Zurich

07/05/2007 33

towards fundamental timescale of the photo-effect

experiment:

x-ray photoemission spectra (hv=90 eV) from atomic Kr in presence of a strong infrared light field

momentum transfer from light field depends on phase of the field at instance of "birth" of the photoelectron

result:

mapping of the phase of the IR field through the Kr photoemission signal

result: the current world record

Hentschel et al., Nature 414, 509 (2001)

Surface Physics Group, Physics-Institute, U Zurich

extreme energy resolution and "bulk sensitivity"

- narrow-band laser light sources
- time-of-flight analyzers
- state-of-the art experiments
- universal curve: how to measure "bulk data"

ZEKE PES = zero electron kinetic energy PES

 \succ standard: vibrational modes in gas phase

high-resolution spectroscopy:
 rotational modes (here ammonia)

laser pulse: 5 ns, 6.13 eV, 200-300 μ J/pulse detection: time-of-flight, electron mutliplier and 500 MHz oscilloscope energy resolution: 0.6 cm⁻¹ = 75 μ eV! but close to kinetic energy zero (threshold ionization)

total x range: $480 \text{ cm}^{-1} = -60 \text{ meV}$ Signorell et al., J. Chem. Phys. 106, 6523 (1997)

laser combined with time-of-flight detector (TOF)

- TOF resolution limited by TDC: currently about 250 ps possible
- 2 eV kinetic energy = 8.4x10⁵ m/s, drift tube of 0.5 m -> about
 0.5 μs flight time
- TOF resolving power $\Delta t/t = \Delta v/v = 0.5 \Delta E/E = 5 \times 10^{-4}$
- energy resolution TOF = $10^{-3} * E_{kin} = 2 \text{ meV}$
- spectral width of the exciting laser at photon energy of 8 eV: pulse duration 100 ps or 20 μ eV (transform limit) negligible

for PES with time-of-flight detection see e.g. Karlsson et al., Rev. Sci. Instr. 67, 3610 (1996)

Surface Physics Group, Physics-Institute, U Zurich

current state-of-the-art with conventional light source

- high-flux microwave-driven He discharge lamp
- hemispherical electrostatic analyzer
- exp. resolution 2-4 meV, sample temperature down to ~ 4K

Tsuda et al., Phys. Rev. Lett. 87, 177006 (2001) Physica B 312-313, 666 (2002)

Surface Physics Group, Physics-Institute, U Zurich

ultrahigh resolution with lasers

laser: 6.994 eV + Scienta R4000 spectrometer, $\Delta E = 360 \ \mu eV$

Kiss et al., Phys. Rev. Lett. 94, 057001 (2005)

superconduction gap in boron-doped diamond

exp. energy resolution 700 μ eV

Ishizaka et al., Sci. Techn. Adv. Mat. 7, S17 (2006)

Surface Physics Group, Physics-Institute, U Zurich

new aspects of the interpretion at low photon energy

PHYSICAL REVIEW LETTERS

week ending 13 JANUARY 2006

 $\label{eq:laserBasedAngle-ResolvedPhotoemission, the Sudden Approximation, and Quasiparticle-Like Spectral Peaks in Bi_2Sr_2CaCu_2O_{8+\delta}$

J. D. Koralek,^{1,2,*} J. F. Douglas,¹ N. C. Plumb,¹ Z. Sun,^{1,3} A. V. Fedorov,³ M. M. Murnane,^{1,2} H. C. Kapteyn,^{1,2} S. T. Cundiff,² Y. Aiura,⁴ K. Oka,⁴ H. Eisaki,⁴ and D. S. Dessau^{1,2,†}

- bulk sensitive measurements at low kinetic energy
- > problem: sudden approximation still valid?
- required for current interpretation of photoemission spectra

quasi-particle spectra at low energy

- ✓ pragmatic answer: sudden approximation apparently valid
- ✓ obervation of sharp quasi-particle peaks

Koralek et al., Phys. Rev. Lett. 96, 017005 (2006)

take-home message

Iasers had huge impact on photoelectron spectroscopy:

- temporal resolution (femto- and attoseconds)
- study of matter far from thermodynamic equilibrium
- ultrahigh energy resolution possible
- "cheap" way of performing bulk-sensitive high-resolution measurements

new challenges:

- experiment: space-charge problems
- higher photon energies for high-flux narrow-band sources
- theory: validity of the sudden approximation
- theory: inclusion of coherence effects (talk tomorrow)
- **dream:** combine femtosecond with spatial nanometer resolution:
 - ... using photoemission microscope Chelaru et al., Phys. Rev. B 73, 115416 (2006)
 - ... using laser and STM

Takeuchi et al., Appl. Phys. Lett. 85, 3268 (2004)

acknowledgments

Andrei Dolocan Claudio Cirelli Dominik Leuenberger Hansjörg Neff

Matthias Muntwiler Felix Baumberger

Martin Klöckner Thomas Greber Jürg Osterwalder many discussions with:

M. Aeschlimann (Kaiserslautern)
M. Donath (Münster)
H. Dürr (Berlin)
F. Reinert (Würzburg)
Z.-X. Shen (Stanford)
B. Siwick (Montreal)
M. Weinelt (Berlin)
M. Wolf (Berlin)
H. Zacharias (Münster)

