Time-resolved photoelectron spectoscopy from *h*-BN/Ni(111)

Matthias Hengsberger Physik-Institut der Universität Zürich

International Seminar on Strong Correlations and Angle-Resolved Photoemission Spectroscopy CORPES 07 - MPIPKS Dresden May 8, 2007

- o goal and approach of time-resolved experiments
- o time-resolved two-photon photoelectron spectroscopy
- o population decay and dephasing times
- o our system: *h*-BN/Ni(111)
- o observation and modeling of resonance and coherence effects
- o probe for magnetic order
- o conclusion

motivation for real-time measurements

- measure physical observables in real time
- idea: direct measurement of relevant time scales, e.g. in relaxation processes
- such measurements are complementary to spectroscopy, where time scales are *indirectly* deduced
- requirement: temporal resolution in the order of the relevant timescale... "an ultrafast camera"

pulsed water jet - high speed movie total time about 0.5 ms source: http://www.iwf.de/Navigation/Projekte/LNW/Stroboskop/index.jsp

pump-probe scheme

observable: f. ex. photoelectrons generated by probe pulse time resolution: cross-correlation of pump and probe pulses temporal jitter: none here

see e.g. Bonn et al., Phys. Rev. B 61, 1101 (2000)

generation of light pulses: state-of-the-art

Steinmeyer et al., Science 286, 1507 (1999) Corkum, Nature 403, 845 (2000) typ. resolution in photoemission experiments nowadays: 10-150 fs

Bauer and Aeschlimann, J. El. Spec. 2002

Petek et al., Phys. Rev. Lett. 79, 4649 (1997) Hattori et al., Jpn. J. Appl. Phys. 39, 4793 (2000)

photoelectron spectroscopy with pulsed laser light

- → advantage of pulsed light sources: high peak intensity
- \rightarrow reasonable cross-sections for multi-photon processes:

2PPE or two-photon-photoemission

on how to disentangle initial and intermediate states

A initial state features move with $h\upsilon_1 + h\upsilon_2$

B intermediate state peaks move with hv_2

C "energy pooling" do not move (Auger-like process)

see e.g. Giessen et al., PRL 55, 300 (1985) W. Steinmann, Appl. Phys. A 49, 365 (1989)

time-resolved 2PPE

introduce variable time delay between first and second pulse

> in case of intermediate state, the excited population decays exponentially with a typical time constant τ after the first pulse

extracting lifetimes from the transient intensities

if temporal pulse profiles (or cross-correlation) are known, the transients can be deconvoluted \rightarrow direct access to decay constant

Höfer et al., Science 277, 1480 (1997)

shift of cross-correlation maximum

solution of the differential eqn. for excited state population:

$$\frac{dN_2}{dt}(t) = RI_{\text{pump}}(t) - \frac{N_2(t)}{\tau}$$

and convolution with probe pulse yields a transient with shifted maximum.

 \rightarrow measurement of the population decay time of the intermediate state

e.g. Velic et al., J. Chem. Phys. 109, 9155 (1998)

lifetimes show up as shifts of the correlation maxima

in case of a real intermediate state: population decay time ("lifetime") causes exponential tail *and*

shift of maximum of transient

Hertel et al., Phys. Rev. Lett. 76, 535 (1996) J. Vac. Sci. Techn. A15, 1503 (1997)

image states on noble gas layers

lifetime as function of energy

comparing spectral linewidth and lifetime

peak width in spectra typically several 100 meV = "lifetime" of 5 fs observed lifetimes often 10...300 fs...?

additional decay term, observable only in phase-senstive experiments: phase decay or *dephasing* (decay of optical coherence), caused by

- finite lifetime of photohole
- quasi-elastic scattering in the intermediate state

mathematical model: density-matrix formalism (optical Bloch equations)

$$\frac{d\rho_{22}}{dt} = \frac{\mu_{12}\varepsilon(t)}{2i\hbar} (\tilde{\rho}_{12} - \tilde{\rho}_{21}) - \frac{\rho_{22}}{T_1}$$

$$\frac{d\tilde{\rho}_{12}}{dt} = \frac{\mu_{12}\varepsilon(t)}{2i\hbar} (\rho_{22} - \rho_{11})$$

$$+ \left(i(\omega_{12} - \omega) - \frac{1}{T_2}\right) \tilde{\rho}_{12}$$

$$\tilde{\rho}_{12} = \rho_{12} \exp[-i(\omega_{12} - \omega)t]$$
population decay
("energy relaxation")
"pure" dephasing
$$T_2 = (1/2T_1 + 1/T_2^*)^{-1}$$

 T_2 related to linewidth in spectra

Hertel et al., Phys. Rev. Lett. 76, 535 (1996) Boger et al., Phys. Rev. B 65, 075104 (2002)

description of the 2PPE spectrum

assumptions: density matrix formalism ("optical Bloch equations" or "Liouville-von Neumann formalism") analytic solution of **cw** case for 3-level system, i.e. *no time dependence*

typical setup: our laboratory

h-BN on Ni(111)

- > perfect monolayer growth on Ni(111)
- > upon exposure to ~100 L of borazine
- good match of lattice constant
- atomic and electronic structure well known

recipe by Nagashima et al., PRB 51, 4606 (1995)

film preparation

recipe: Nagashima et al., PRB 51, 4606 (1995) W. Auwärter, PhD thesis U Zurich (2003)

motivation: charge transfer across the monolayer

C₆₀/*h*-BN/Ni: temperature dependence of LUMO occupation

UPS, hv = 21.22 eV, normal emission Muntwiler et al. Phys. Rev. B 71, 241401 (2005)

long-term motivation: spin-injection

resistance varies as function of ferromagnetic alignement

Surface Physics Group, Physics-Institute, U Zurich

the band structure of *h*-BN/Ni(111)

occupied band structure understood - what about conduction bands ?

19 layer slab calculations, Grad & Blaha (TU Vienna) Grad et al., Phys. Rev. B 68, 085404 (2003) photoemission: W. Auwärter, PhD thesis U Zurich 2003

Surface Physics Group, Physics-Institute, U Zurich

spin-resolved inverse photoemission

K. Zumbrägel et al., in preparation (2007)

2PPE: normal emission spectra

 \Rightarrow interface state peak increased by 2-3 orders of magnitude!

resonant excitation channels are known in 2PPE

(eV)

transient population density of intermediate image potential states may be very high:

 \rightarrow resonant direct transition

Giesen et al., Phys. Rev. Lett. 55, 300 (1985) and Phys. Rev. B 33, 5241 (1986) Steinmann, Appl. Phys. A 49, 365 (1989)

dispersion on resonance at 796 nm

image state 3.0excited with 2hv E_{F2} 2.5 2.0kinetic energy (eV) conduction band 1.5excited with 2hv E_{F1} 1.0-0.5 image state excited with 1hv0.0 -0.2 -0.4 0.0 0.2 0.4 0.6 k_{||} (Å⁻¹) hv = 1.558 eV

log intensity scale

Muntwiler et al., Phys. Rev. B 75, 075407 (2007)

photon energy dependence

band mapping

Surface Physics Group, Physics-Institute, U Zurich

Muntwiler et al., Phys. Rev. B 75, 075407 (2007)

resonance as result of two excitation pathways

spin-resolved 2PPE at $\lambda = 794$ nm

summary: spectroscopy

state/peak	method	band bottom (eV)	effective mass (m ₀)	exchange splitting (meV)
interface state	theory (DFT)	1.7	0.73	100
	INV. PE	1./	1.1 ± 0.2	150 ±50
	2PPE	1.51	0.43 ±0.1	
image potential state	theory (DFT)			
	inv. PE	E _{vac} - 0.6	1.46 ±0.5	
	2PPE	E _{vac} - 0.65	1.43 ±0.2	> 36 (*)
resonant peak	theory (DFT)			
	inv. PE			
	2PPE	4.63 (final state)	1.12 at delay 0	26

(*) deduced from temperature-dependent data (see later) theory (DFT calculations): Grad et al., Phys. Rev. B68, 085404 (2003)

correlation traces as function of photon energy

 \Rightarrow two different processes: blue after red and red after blue \Rightarrow in resonance, cross-correlation almost symmetric !

Muntwiler et al., Phys. Rev. B 75, 075407 (2007)

can we see lifetime-related shifts in correlation curves ?

YES, even two shifts!

optical excitation : rate equations

absorption: probability Bw (w= photon density)

spontaneous emission: probability A

stimulatedemission:probabilityBw

 \Rightarrow rate equations

(1) level population $N_1 + N_2 = N$ (2) transition rates

 $dN_1/dt = -dN_2/dt = N_2A + (N_2 - N_1)Bw$

yield general solution for excited state population N_2 [assuming $N_1(0){=}N]$: $N_2(t)/N = \Big\{1{-}\frac{(A{+}Bw)}{A{+}2Bw}\Big\}\Big\{1{-}e^{-(A{+}2Bw)t}\Big\}$

if spontaneous emission neglected : $N_2(t)/N = \frac{1}{2} \{1 - e^{-2Bwt}\} \xrightarrow[t \to \infty]{t} \frac{1}{2}$ where $2Bw = \alpha F(t) = \alpha \int_{-\infty}^{t} d\tilde{t} I(\tilde{t})$ key parameter : intensity !

see e.g. R. Loudon "The Quantum Theory of Light", Oxford University Press (1973)

density matrix formalism

(or : Liouville-von Neumann in 2PPE community)

describe system by density matrix Schrödinger picture (time-dependent wave function)

wave function :

density matrix formalism :

$$\begin{split} |\psi\rangle &= C_{1}(t) |1\rangle + C_{2}(t) |2\rangle \qquad \rho \equiv |\psi\rangle \langle \psi| = \begin{pmatrix} C_{1} \\ C_{2} \end{pmatrix} \begin{pmatrix} C_{1}^{*} & C_{2}^{*} \end{pmatrix} = \begin{pmatrix} C_{1}C_{1}^{*} & C_{1}C_{2}^{*} \\ C_{1}^{*}C_{2} & C_{2}C_{2}^{*} \end{pmatrix} \\ \begin{vmatrix} C_{1}(t) \end{vmatrix}^{2} \qquad \text{probability of being in lower state} \qquad = \rho_{11} \\ \begin{vmatrix} C_{2}(t) \end{vmatrix}^{2} \qquad \text{probability of being in excited state} \qquad = \rho_{22} \\ C_{1}(t)C_{2}^{*}(t) = C_{1}^{*}(t)C_{2}(t) \quad \text{coherent superposition state} \qquad = \rho_{12} = \rho_{21}^{*} \\ \langle \mathbf{A} \rangle \text{ this state is created by interaction with radiation} \qquad = \mathrm{Tr}(\rho \mathbf{A}) \end{split}$$

example : macroscopic polarization = off-diagonal elements

$$P = N \langle \mu_{12} \rangle = N Tr(\mu_{12}\rho) = N \mu_{12} (\rho_{12} + \rho_{21}) = 2N \mu_{12} Re\{\rho_{12}\}$$

Surface Physics Group, Physics-Institute, U Zurich

optical Bloch equations = eqns. of motion of density matrix

starting from Liouville equation $\dot{\rho} = -\frac{i}{h} [\mathbf{H}, \rho]$

where
$$\mathbf{H} = \mathbf{H_0} + \mathbf{V} = \begin{pmatrix} E_1 & 0 \\ 0 & E_2 \end{pmatrix} + \mu_{12} \cdot \mathbf{E}(t) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

introduce (phenomenologically) decay of states by inserting imaginary energy terms \Rightarrow leads to exponential decay in probability amplitudes :

$$\mathbf{H} + \mathbf{i}\Gamma = \mathbf{H}_{\mathbf{0}} + \mathbf{i}\Gamma + \mathbf{V} = \begin{pmatrix} \mathbf{E}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{E}_2 \end{pmatrix} + \mathbf{i}\begin{pmatrix} \Gamma_1 & \mathbf{0} \\ \mathbf{0} & \Gamma_2 \end{pmatrix} + \mu_{12} \cdot \mathbf{E}(\mathbf{t})\begin{pmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{0} \end{pmatrix}$$

we obtain the equation of motion with the convention $\Gamma {=} 1 / T$:

$$\dot{\rho} = -\frac{1}{2} [\Gamma, \rho] - \frac{i}{h} [\mathbf{H}, \rho]$$

> population decay or "energy relaxation" - "longitudinal relaxation time" recombination by (usually radiative) decay - inelastic process

$$\dot{C}_i = \dots - \frac{1}{2} \Gamma_i C_i \implies C_i(t) \propto \exp\left\{-\frac{i}{h} E_i t - \frac{1}{2} \Gamma_i t\right\}$$

since $\rho_{ii} = C_i^* C_i$ it follows that

$$\dot{\rho}_{ij} = \dots - \Gamma_{ij} \rho_{ij}$$
 with $\Gamma_{ij} = \frac{1}{2} \left(\Gamma_i + \Gamma_j \right)$

S''pure" dephasing : addit'nl decay of off-diagonal elements interaction with environment (quasi-elastic processes) causes fluctuations of resonance frequency:

 $\omega(t) = \omega_0 + \delta \omega(t)$: integrate and take ensemble average

$$\Rightarrow \left\langle \exp\{-i\int d\tilde{t}\,\delta\omega(\tilde{t})\}\right\rangle = (...a \text{ lot of algebra...}) = e^{-\Gamma_{ph}t}$$

 \boxtimes yields an effective transverse decay rate

$$\Gamma_{12}^{T} = \frac{1}{2} \left(\Gamma_{1} + \Gamma_{2} \right) + \Gamma_{ph} \stackrel{\text{often}}{=} \frac{1}{2T_{1}} + \frac{1}{2T_{2}} + \frac{1}{T_{12}^{*}}$$

combining hamiltonian and decay terms yields:

$$\dot{\rho}_{11} = -\Gamma_1 \rho_{11} + \frac{i}{h} \mu_{12} \cdot \mathbf{E}(t) \left(\rho_{12} - \rho_{21} \right)$$
(1)

$$\dot{\rho}_{22} = -\Gamma_2 \rho_{22} - \frac{i}{h} \mu_{12} \cdot \mathbf{E}(t) \left(\rho_{12} - \rho_{21} \right)$$
(2)

$$\dot{\rho}_{12} = -\Gamma_{_{12}}^{T} \rho_{12} - i\omega_{0}\rho_{12} - \frac{i}{h} \mu_{12} \cdot \mathbf{E}(t) \left(\rho_{22} - \rho_{11}\right)$$
(3)

with
$$\Gamma_{12}^{T} = \frac{1}{2} (\Gamma_1 + \Gamma_2) + \Gamma_{ph}$$
 and $h\omega_0 = E_2 - E_1$
and $\mathbf{E}(t) = \frac{1}{2} (\hat{\mathbf{E}}(t) + \hat{\mathbf{E}}^*(t))$

optical Bloch equations (OBE)

first calculations: optical Bloch equation, cw case

- based on : Wolf et al., Phys. Rev. B 59, pp 5926-35 (1999)
- c.f. S. Mukamel, *Principles of nonlinear optics*, Oxford U Press 1995
- 4-level system (initial and final state continua, 2 discrete intermediate states), including RWA, cw approximation (no time dependence), analytical solution

dephasing dominated by photohole lifetime

broad peaks in conventional photoemission spectra (21.2 eV): \rightarrow photohole lifetimes of a few femtoseconds

from: F. Manghi et al., PRB 59, R10409 (1999)

dynamical calculations: solving the Optical Bloch Eqns.

- semi-classical ansatz for electric field
- \succ solve set of 9-10 coupled differential equns.
- > integration over absolute time axis (left)
- temporal shifts and broadening due to dephasing reproduced

summary: time-resolved measurements

very long lifetimes found in two-colour experiments:
 interface state 107 fs (in close proximity to metal!)
 image potential state 261 fs - can be understood within dielectric continuum model (Lingle et al., Chem. Phys. 205, 191 (1996))

time-resolved measurements give further support for two excitation channels in the resonant peak

> effective mass of resonant peak changes as function of time delay (not yet understood)

2PPE signal as probe for magnetic order

idea:

- resonance sensitive to precise band energies
- "detuning" by varying exchange splitting
- sensitivity to magnetic order?
- first test: 2PPE at high temperature...

2PPE spectra as function of temperature

Surface Physics Group, Physics-Institute, U Zurich

spectra as function of temperature

image potential state position versus temperature

above T_c:

thermal band shift caused by thermal lattice expansion

below T_c:

thermal band shift + magnetic band shift (collapsing exchange splitting)

Surface Physics Group, Physics-Institute, U Zurich

exchange splitting of image potential state

subtraction of the thermal shifts leads to:

T/Tc [K]

- image potential state dominates peak position
- majority character
- width decreases by 60 meV over same temperature range
- → majority part of the exchange splitting?

agrees with previous measurements for bare Ni: Fischer *et al.*: $\Delta E < 40 \text{ meV}$ (2PPE); Phys. Rev. B 42, 9717 (1990) Donath *et al.*: $\Delta E = 18 \text{ meV}$ (IPES); Phys. Rev. Lett. 69, 1101 (1992)

Conclusions : time-resolved 2PPE from *h***-BN/Ni(111)**

- huge resonance observed in 2PPE spectra from h-BN/Ni(111)
- resonance is caused by interaction of two transition channels within the h-BN layer
- spectroscopy quite difficult to interpret but in reasonable agreement with DFT and inverse photoemission
- lifetimes of intermediate states are rather long: about 107 fs for interface state and 261 fs for image potential state
- transient spectra can be modeled using the framework of Optical Bloch Equations
- resonant peak is partially spin-polarized (~25%, majority)
- new (chemically inert) source for spin-polarized electrons?
- 2PPE spectra show signatures of magnetic phase change at Tc
- exchange splitting of image potential state estimated to be >36 meV

people who contributed

Andrei Dolocan Claudio Cirelli Dominik Leuenberger Hansjörg Neff

Matthias Muntwiler Martina Corso Felix Baumberger

Martin Klöckner Thomas Greber Jürg Osterwalder

in collaboration with:

Jorge Lobo-Checa (PSI & U Zürich, now U Basel)

Wolfgang Schuesslbauer Thomas Ruchti (Time-Bandwidth-Products)

C. Eibl, K. Wulff, K. Zumbrägel, M. Donath (U Münster)

acknowledgments

sample preparation and characterization

Dr. H. Sachdev (U Saarbrücken)

Dr. W. Auwärter (now TU München)

theoretical support

Prof. P. Blaha (TU Wien)

optical setup

Dr. Günter Steinmeyer (formerly ETHZ, now Max-Born-Institut, Berlin) Prof. Peter Hamm and Dr. Jan Helbing (PCI, U Zürich)

time- and spin-resolved photoelectron spectroscopy

Prof. Helmut Zacharias (U Münster) Prof. Vladimir Petrov (TU St. Petersburg)

financial support from

Swiss National Science Foundation University of Zürich

