Spin-orbit coupling, matrix elements, and scattering effects in angle-resolved photoelectron spectroscopy

Jürgen Henk Theory Department Max Planck Institute of Microstructure Physics Halle (Saale), Germany

Outline

One-step model of spin-resolved photoemission
 Dirac equation, multiple-scattering theory, ...

Spin-orbit coupling and spin polarization Rashba effect: Au(111) Magnetic dichroism Probing spin-orbit coupling: Fe(110) Photoelectron diffraction Spin-dependent final-state scattering: Fe(001) Spin motion of photoelectrons Spin precession in ultra-thin magnetic films: Fe/Pd(001)

Summary

Outline

One-step model of spin-resolved photoemission
 Dirac equation, multiple-scattering theory, ...

Spin-orbit coupling and spin polarization Rashba effect: Au(111) Magnetic dichroism Probing spin-orbit coupling: Fe(110) Photoelectron diffraction Spin-dependent final-state scattering: Fe(001) Spin motion of photoelectrons Spin precession in ultra-thin magnetic films: Fe/Pd(001)

Summary

Photoelectron spectroscopy

Spin- and angle-resolved photoelectron spectroscopy (SPARPES)

One-step model for SPARPES

Excitation and transport = coherent process

Relativistic description (Dirac equation) Orbital and spin degrees of freedom treated on equal footing

Spin density matrix $\varrho_{\tau\tau'} \propto -\text{Im} \left\langle \Psi_{\tau}(E) | \Delta G^{+}(E-\omega) \Delta^{\dagger} | \Psi_{\tau'}(E) \right\rangle, \tau = \uparrow, \downarrow$ $\Psi_{\tau} \text{ time-reversed (SP)LEED state}$ Feynman diagram $P_{1} = \text{tr} \varrho$ Photocurrent $j = \text{tr} \varrho$ Photoelectron spin polarization $\vec{P} = (\text{tr} \vec{\sigma} \varrho)/(\text{tr} \varrho)$

Sudden approximation

Multiple-scattering theory

Stepwise building up the entire system

Separation of geometry and single-site scattering properties

Flexible

- Low-dimensional systems: Surfaces, thin films, defects, adatoms, ...
- Boundary conditions
- Efficient
- Accurate

Relativistic theory

Dirac equation (instead of the Schrödinger equation)

Dyson equation $G = G_0 + G_0 V G$

Layer KKR

Layer = fundamental object

Change of basis

- Spin-angular basis for single-site properties
- Plane waves for interlayer scattering

omni2k program package

- ... for electron spectroscopies
- Spin-polarized relativistic layer-KKR (SPRLKKR)
- Systems
 - Bulk, surfaces, films, adatoms, nanocontacts
- Modes
 - Band structure, local spectral density, DOS, magnetic anisotropy
 - SPLEED
 - Photoemission (valence bands and core levels)
 - Spin-dependent transport in nanostructures (STM, ...)
- Green function
- Disorder
 - Coherent potential approximation
- Adaptive wave-vector mesh for Brillouin zone sampling
- Object-oriented (C++) and modular
- User friendly (?!) and free (henk@mpi-halle.de)

Ab initio SPARPES calculations

Calculation scheme

- 1. DFT+LSDA calculations (e.g. KKR code of Arthur Ernst)
 - → ground-state potentials
- 2. Compare band structures, LDOS obtained by omni2k with original ones
 - PE- and ab initio calculations on equal footing
- 3. SPARPES calculations (two modes: GF and PEOVER)

'Free' parameters

- Optical potential (local and energy-dependent self-energy)
- Size of basis set (spin-angular functions, plane waves)
- System size (e.g. number of layers contributing to the photocurrent)
- Mesh size for Brillouin sampling

Intrinsic spin-orbit effects

Present in the ground state

Band gaps and hybridization

Splitting of bulk electronic states

- In non-centrosymmetric solids
- Bulk inversion asymmetry (BIA)
- Dresselhaus effect

Splitting and spin polarization of surface states

- Structural inversion asymmetry (SIA)
- Rashba-Bychkov effect

Examples

- Rashba-Bychkov effect in Au(111)
- Magnetic dichroism in Fe(110)

Extrinsic spin-orbit and scattering effects

'Matrix element effects' - due to the measurement

Extrinsic spin-orbit effects

Spin polarization of photoelectrons

- Optical orientation (Fano)
- Spin polarization with linearly polarized light (Feder, Tamura, JH)

Magnetic dichroism

Examples

- Rashba effect in Au(111)
- Magnetic linear dichroism in Fe(110)

Scattering effects Examples

- Spin-dependent photoelectron diffraction in Fe(001)
- Spin precession and relaxation (`spin motion') in Fe-Pd(001)

Outline

One-step model of spin-resolved photoemission

Dirac equation, multiple-scattering theory, ...

Spin-orbit coupling and spin polarization
 Rashba effect: Au(111)
 Magnetic dichroism

 Probing spin-orbit coupling: Fe(110)

 Photoelectron diffraction

 Spin-dependent final-state scattering: Fe(001)

 Spin motion of photoelectrons

 Spin precession in ultra-thin magnetic films: Fe/Pd(001)

Summary

Rashba-Bychkov effect

Band splitting by spin-orbit coupling in a two-dimensional electron gas (2DEG)

Rashba-Bychkov effect

Free Electrons in two dimensions (2DEG)

Dispersion without SOC $E_{\pm} = \frac{\hbar^2}{2m} \vec{k}_{\parallel}^2$

Spin-orbit coupling

Splitting

Isotropic 2DEG versus Au(111) surface state Anisotropic spin polarization **P**^{tan} 2DEG $\begin{cases} P_{\pm}^{tan} = \pm 1\\ P_{\pm}^{rad} = 0\\ P_{\pm}^{z} = 0 \end{cases}$ Prad • Complete • Normal to the wave-vector k_x • Within the surface plane $\operatorname{Au(111)} \begin{cases} P_{\pm}^{\operatorname{tan}} &= \alpha_{\pm} \\ P_{\pm}^{\operatorname{rad}} &= \beta_{\pm} \cos 3\varphi \\ P_{\pm}^{\mathsf{z}} &= \gamma_{\pm} \cos 3\varphi \end{cases}$ Value and sign of α , β und γ ? Threefold rotational symmetry

Au(111) surface state

Summary

Agreement of dispersion and splitting

Spin polarization

		1	1	1
Ground state	Model calculation	1	0	0
	Ab initio calculation	0.97	0.01	0.014
Photoelectron	PE calculation	0.6	0.06	0.04
	PE experiment	0.4		< 0.05

Dtan

Drad

DΖ

Photoelectron spin polarization

Strongly reduced by matrix element effects

Depends on the set-up

- 'Good' set-up: p-polarized light
- 'Bad' set-up: circularly polarized light

JH, A. Ernst, P. Bruno, Phys. Rev. B 68 (2003) 165416; Surf. Sci. 566-568 (2004) 482
JH, M. Hoesch, J. Osterwalder, A. Ernst, P. Bruno, J. Phys. CM 16 (2004) 7581

Outline

One-step model of spin-resolved photoemission
 Dirac equation, multiple-scattering theory, ...

Spin-orbit coupling and spin polarization Rashba effect: Au(111)

- Magnetic dichroism
 - Probing spin-orbit coupling: Fe(110)
- Photoelectron diffraction
 - Spin-dependent final-state scattering: Fe(001)
- Spin motion of photoelectrons
 - Spin precession in ultra-thin magnetic films: Fe/Pd(001)

Summary

Magnetic linear dichroism

Magnetic dichroism

Change of the photocurrent upon magnetization reversal $j(\vec{M}) \neq j(-\vec{M})$

Magnetic *linear* dichroism

Normal emission p-polarized light Magnetization in a mirror plane

 \mapsto reduction of symmetry (2mm \rightarrow m)

'Golden rule' of magnetic dichroism

SOC produces spin polarization of photoelectrons along the magnetization \mapsto magnetic dichroism

NB: MD does not probe magnetism but spin-orbit coupling

Group-theoretical analysis

Double group

Two representations

$$\begin{split} \gamma_{+} &= \Sigma^{1\uparrow} \oplus \Sigma^{2\downarrow} \oplus \Sigma^{3\uparrow} \oplus \Sigma^{4\downarrow} \\ \gamma_{-} &= \Sigma^{1\downarrow} \oplus \Sigma^{2\uparrow} \oplus \Sigma^{3\downarrow} \oplus \Sigma^{4\uparrow} \end{split}$$

Photocurrent (Fermi's `golden rule') $j(\pm \vec{M}) = \sin^2 \vartheta \left(|M^{1++}|^2 + |M^{1--}|^2 \right) \\
+ \cos^2 \vartheta \left(|M^{3++}|^2 + |M^{3--}|^2 \right) \\
\pm \frac{\sin 2\vartheta}{2} \Im \left(M^{1++*}M^{3++} - M^{1--*}M^{3--} \right) \\$ Hybridization by SOC

MD does not probe areas of large magnetism but of large hybridization

A. Rampe, G. Güntherodt, D. Hartmann, JH, T. Scheunemann, R. Feder, Phys. Rev. B 57 (1998) 14370

Fe(110) – hybridization

Focus on $\Sigma^{1\uparrow}\oplus\Sigma^{3\uparrow}$ and $\Sigma^{1\downarrow}\oplus\Sigma^{3\downarrow}$

Change of orbital character by SOC

Fe(110) – Magnetic linear dichroism

MD allows to identify areas of hybridization induced by SOC

Outline

One-step model of spin-resolved photoemission
 Dirac equation, multiple-scattering theory, ...

Spin-orbit coupling and spin polarization Rashba effect: Au(111) Magnetic dichroism Probing spin-orbit coupling: Fe(110) Photoelectron diffraction Spin-dependent final-state scattering: Fe(001) Spin motion of photoelectrons Spin precession in ultra-thin magnetic films: Fe/Pd(001)

Summary

Photoelectron diffraction

Emission from core levels \mapsto element-specific

Constant kinetic energy Polar-angle scans

Information on

- Surface geometry
- Surface magnetism

Spin-dependent scattering in the final state (photoelectron)

Example: Dichroic PED from 3*p* levels in Fe(001)

JH, A.M.N. Niklasson, B. Johansson, Phys. Rev. B 59 (1999) 13986

Experiment

Solid Numerical All Fe sites emit No scattering No surface barrier

Atomic model

Outline

One-step model of spin-resolved photoemission
 Dirac equation, multiple-scattering theory, ...

Spin-orbit coupling and spin polarization

- Rashba effect: Au(111)
- Magnetic dichroism
 - Probing spin-orbit coupling: Fe(110)
- Photoelectron diffraction
 - Spin-dependent final-state scattering: Fe(001)
- Spin motion of photoelectrons
 - Spin precession in ultra-thin magnetic films: Fe/Pd(001)

Summary

Spin motion

Motion of electrons in a magnetic system

Precession: Phase difference between up- & down wave-functions

Relaxation: Inelastic processes

Experiments:

- Transmission through a freestanding magnetic film
- SPLEED

New approach: Spin-resolved ARPES

- 1. SOC produces spin-polarized photoelectrons in the sample
- 2. Transmission through the magnetic film
- 3. Spin-resolved detection

JH, P. Bose, Th. Michael, P. Bruno, Phys. Rev. B 68 (2003) 052403.

Spin motion of photoelectrons

Summary

Spin-orbit effects

Au(111)

Intrinsic SOC effect: Rashba effect in the L-gap surface state

Extrinsic SOC effect: photoelectron spin polarization due to SOC

Fe(110)

Intrinsic SOC effect: Band gaps and hybridization

Extrinsic SOC effect: Magnetic dichroism (transition matrix elements)

Scattering effects

Photoelectron diffraction in Fe(001)

Spin-dependent scattering in the final state

Spin motion in Fe/Pd(001)

Spin-dependent scattering in the final state

Further....

Matrix element effects in ... from the Ni(111) surface

M. Mulazzi et al, PRB 74 (2006) 035118

Thanks

MPI Halle A. Ernst, P. Bruno

University Halle and International Max Planck School on Research and Technology of Nanostructures

P. Bose, Th. Michael

University Duisburg-Essen R. Feder, Th. Scheunemann, E. Tamura (Tsukuba)

RWTH Aachen G. Güntherodt, D. Hartmann, A. Rampe

University Zürich M. Hoesch, J. Osterwalder