Recent ARPES Results from 4d & 5d TMOs (Sr₂RhO₄, Sr₂IrO₄)

Changyoung Kim Dept. Physics, Yonsei University

Effect of the Octahedra Rotation on the Electronic Structure of Sr₂RhO₄

B. J. Kim¹, J. Yu¹, S. J. Oh¹, H. Koh², I. Nagai³, S. I. Ikeda³, C. Kim

 ¹School of Physics and Center for Strongly Correlated Materials Research, Seoul National University, Seoul, Korea
 ²Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
 ³National Institute of Advanced Industrial Science and Technology,

Tsukuba, Ibaraki 305-8568, Japan

B. J. Kim, et al., PRL, 97, 106401 (2006).

- Background (Sr,Ca)₂RuO₄
- ARPES data from Sr₂RhO₄ Missing d_{xy} Fermi Surface
- Comparison with Band Calculation
- Summary Octahedra Rotation Effect on the Electronic
 Structure

Phase diagram of Ca_{2-x}Sr_xRuO₄

S. Nakatsuji et al, Phys. Rev. Lett. 84, 2666 (2000).

Orbital Selective Mott Transition (OSM7

Structural distortion of Ca_{2-x}Sr_xRuO₄

Various ground states are realized by structural distortions.

4d transition-metal oxide

Large spatial extent of 4*d* orbitals

→large bandwidth, large 10*Dq*.
→tends to be weakly-correlated.

Low-spin configuration is expected.

Rotation of Octahedra

Rotation brings about:

- Doubling of the unit cell
- Decrease of M-O-M bond angle

- Band folding
- Bandwidth narrowing

Fig. 1. Structure diagram of the Sr_2RhO_4 with $I4_1/acd$ sp: group showing the RhO_6 octahedra rotation at z = 1/8 and z3/8 in ref. 4. The dotted lines shows the structure of Sr_2Ru with I4/mmm space group.

Unit cell doubling and band folding

Band width narrowing

ARPES data on Ca-doped SRO

S.-C. Wang et al. PRL 93,177007 (2004)

$$Ca_{1.5}Sr_{0.5}RuO_4$$

ARPES signal is generally broad and weak.

Sr₂RhO₄

39	40	41	42	43	44	45	46	47	48
Y	Zr	Nb	Mo	TC	Ru	Rh	Pd	Ag	Cd

- Share same crystal structure with Sr₂RuO₄.
- 5 electrons in 4*d* orbitals.
- Rotation angle $\sim 10^{\circ}$.
- No supeconductivity.

Sr₂RhO₄ presents an opportunity to study the effect of rotation without "disorder".

Electrical resistivity

Similar to $\rho(T)$ in Sr₂RuO₄

- Large anisotropy
 <u>ρ_c/ ρ_{ab} (3K) = 2400</u>
- T^{2} dependence Fitting with $\rho = \rho_{0} + AT^{2}$ $\rho_{ab}(T) \stackrel{\rho_{0}}{}_{A_{ab}} = 8.6 \ \mu\Omega \text{cm}$ $A_{ab} = 6.26 \times 10^{-3} \ \mu\Omega \text{cm/K}^{2}$
 - $ρ_c(T) \quad \begin{array}{l}
 ρ_0 = 20.1 \text{ m}\Omega \text{cm} \\
 A_c = 10.55 \mu\Omega \text{cm}/\text{K}^2
 \end{array}$
- Below ~250 K, ρ_c decreases with lowering temperature.
- No superconducting transition was observed down to 36 mK.

Sr₂RhO₄ is a two-dimensional Fermi liquid.

Expected FS of Sr₂RhO₄

By doping one electron: (rigid-band model)

Hase et al. J. of solid state chemistry 123,186 (1996)

We expect basically similar FS topology in Sr₂RhO₄

ARPES measurements

High energy ARPES

low energy ARPES

- ALS BL 7
- Analyzer : Scienta 100
- Temperature : 40K
- Total Energy Resolution : 40 meV
- Angular Resolution : 0.25°
- Photon energy : 85 eV
- Sample cleaved in situ
- SSRL BL
- Analyzer : Scienta 2002
- Temperature : 20K
- Total Energy Resolution : 40 meV
- Angular Resolution : 0.25°
- Photon energy : 20 eV
- Sample cleaved in situ

FS of Sr₂RhO₄

Binding Energy (eV)

Fermi Surface Mapping

Missing *xy*-band(g) FS in Sr₂RhO₄!

B.J. Kim et al.

LDA calculation

WITHOUT distortion (rotation of octahedra) Ζ Γ a hole pocket formed by *xz/yz* orbital band. (α) Х Х an electron pocket formed by x^2 -Ζ y^2 orbital band. (δ) two electron pockets formed by Х Х xy (γ) and yz,zx band (β) 94.8% Occupation : α Ζ 66.8% β

72.5%

7.1%

γ

δ

Effects of the rotational distortion

undistorted undistorted distorted exp and calc. +band folding

LDA calculation shows disappearance of xy-FS (γ) and x^2-y^2 FS (δ).

B. J. Kim, et al., PRL, **97**, 106401 (2006).

Other's result

F. Baumberger et al., PRL 96, 246402 (2006)

Effects of the rotational distortion

B. J. Kim, et al., PRL, **97**, 106401 (2006).

Effects of the rotational distortion

B. J. Kim, et al., PRL, **97**, 106401 (2006).

xy-Band

What about (Ca,Sr)₂RuO₄? - LDA

E. Ko, et al., to appear in PRL

Summary – Sr₂RhO₄

- Rotation of the octahedra leads to hybridization of xy and x²-y² bands.
- Hybridization of xy and x²-y² bands results in:
 (1) transfer of electrons from yz/zx to xy band and
 (2) disappearance of the xy Fermi surface.
- e_g states play vital role in determining electronic structures near E_f, and therefore should be included in the theoretical models that deals with 4*d* TMOs.