Self-consistency of quasiparticle description in high-Tc cuprates

Alexander Kordyuk

Institute of Metal Physics, Kiev, Ukraine Institute for Solid State Research, Dresden, Germany

Complexity of HTSC

Complex physics?

Complex structure?

Complexity in ARPES?

complex but understandable

self-consistency as a tool

Self-consistency as a tool

- How Kramers-Kronig (KK) consistency works Why we believe it is applicable.
 Fine details of quasiparticle spectral function.
 Room for complexity in photoemission process.
- 2. The waterfalls (Where the consistency stops).
- 3. Fingerprints of the bosonic spectrum Quasiparticle spectrum in the whole Brillouin zone k-dependent self-energy ARPES – INS
- 4. Pseudo-gap problem...

Complex electronic structure of CuO₂ bi-layer

Complex electronic structure of CuO₂ bi-layer

Kordyuk PRB 2003

Bare band dispersion = LDA dispersion

Kordyuk PRB 2004

Electronic strucrure of HTSC is bare band dispersion + self-energy

Electronic strucrure of HTSC is bare band dispersion + self-energy

2006

2002

Borisenko PRL 2003

Unadulterated spectral function

Introduction to the nodal spectra analysis

$$A(\omega, \mathbf{k}) = -\frac{1}{\pi} \frac{\Sigma''(\omega)}{(\omega - \varepsilon(\mathbf{k}) - \Sigma'(\omega))^2 + \Sigma''(\omega)^2}$$

$$\Sigma'(\omega) = \omega - \varepsilon(k_m)$$

$$\Sigma''(\omega) = -v_F W(\omega)$$

cond-mat/0510421

Evtushinsky PRB 2006

Voigt fitting procedure

Evtushinsky PRB 2006

Now for the self-energy:

- 1. Real impurity scattering
- 2. Careful energy dependence
- 3. Careful temperature dependence

Energy dependence

Evtushinsky PRB 2006

Temperature dependence

Evtushinsky PRB 2006

Impurity scattering

$$\rho_0 = \frac{m^*}{ne^2\tau} \approx \frac{k_F}{ne^2\hbar} \frac{\Sigma''_{im}}{v_r}$$

forward and isotropic (unitary)?

 $n \sim 1 - x$

How Kramers-Kronig consistency works

Why we believe it is applicable

Bare Fermi velocity from the nodal spectrum

$$A(\omega, \mathbf{k}) = -\frac{1}{\pi} \frac{\Sigma''(\omega)}{(\omega - \varepsilon(\mathbf{k}) - \Sigma'(\omega))^2 + \Sigma''(\omega)^2}$$

$$\Sigma'(\omega) = \omega - \varepsilon(k_m)$$
$$\Sigma''(\omega) = -v_F W(\omega)$$

$$\Sigma'(\omega) = \mathrm{KK} \Sigma''(\omega)$$

Kramers-Kronig transform $\Sigma'(\omega) = KK \Sigma''(\omega)$

$$\Sigma''(\omega) = \begin{cases} \Sigma''_{width}(|\omega|) & \text{for } |\omega| < \omega_m, \\ \Sigma''_{mod}(\omega) & \text{for } |\omega| > \omega_m, \end{cases} \qquad \Sigma''_{mod}(\omega) = -\frac{\alpha \, \omega^2 + C}{1 + \left|\frac{\omega}{\omega_c}\right|^n}, \end{cases}$$

Kordyuk PRB 2005

"High-energy scale"

Kordyuk PRB 2005

Evolution of the kink

Kordyuk PRL 2006

Evolution of the self-energy

Kordyuk PRL 2006

Parameters of the kink

2 channels

$$\lambda = -\left(\frac{d\Sigma'}{d\omega}\right)_{\omega=0}$$

Kordyuk PRL 2006

Intensity of the bosonic channel

Doping level x

Eliashberg function from YBCO

 ω (eV)

Evtushinsky 2007

Two channels

1 "Fermionic" 2 "Bosonic"

mainly xT-independent

featureless: $\Sigma'' \sim \omega^2$, $\Sigma' \sim \omega$

critically depends on (x, T)

energy structure: (i) kinky, ω_k *mainly xT*-independent

(ii) step-like,does not confined at low ω

simple e-e interaction (Auger-like decay) FL

phonons, gap
$$\rightarrow \mathsf{SF}$$

The "waterfalls"

Where the consistency stops

"High-energy scale"

Kordyuk PRB 2005

Extrinsic spectral weight

Inosov cond-mat/0703223

Inosov cond-mat/0703223

Room for complexity of the photoemission process

MDC asymmetry

MDC asymmetry

Fingerprints of the bosonic spectrum

Quasiparticle spectrum in the whole Brillouin zone k-dependent self-energy ARPES – INS

IFW + Forschergruppe + Dahm & Scalapino 2006

Looking for "fingerprints"

of $\chi(\mathbf{k},\omega)$ in $\Delta(\mathbf{k},\omega)$

ARPES: $A(\mathbf{k},\omega) f(\omega) \longrightarrow \Delta(\mathbf{k},\omega)$ $\Delta(\mathbf{k},\omega), \Sigma(\mathbf{k},\omega), \varepsilon_{\mathbf{k}}$

(Δ,Σ) = EE(Δ,Σ,ε,χ) SC

$$\Sigma \sim G \star \chi$$
 N

Pseudogap and CDW in two dimensions

Borisenko arXiv:0704.1544

Pseudogap and CDW in two dimensions

Borisenko arXiv:0704.1544

Pseudogap and CDW in two dimensions

Borisenko arXiv:0704.1544

Conclusions

- Magnetic excitations strongly couples to the conduction electrons—and are, thus, the most probable candidate for mediation of the electron pairing in HTSC.
- The unification of the momentum resolving techniques are required:

 (1) to identify **ultimately** the "fingerprints" of the relevant bosonic spectrum in both Σ(**k**, ω) and Δ(**k**, ω);

(2) to determine the origin of the bosonic spectrum (the degree of itinerancy, in case of spin-fluctuations);

(3) to understand the role of space inhomogeneity in pairing.

• The current rate of improvement of all of the momentum resolving techniques suggests that these problems will be solved very soon.

Thanks to:

ARPES Group, IFW Dresden Sergey Borisenko, Vladimir Zabolotny, Dmytro Inosov, Andreas Koitzsch, Jochen Geck, Roland Hübel, Martin Knupfer, Jörg Fink, Bernd Bühner

MPI-PKS Dresden Iliya Eremin, Alexander Yaresko

IMP Kiev Daniil Evtushinskii

Single Crystals

Helmut Berger Chengtian Lin, Bernhard Keimer S. Ono, Yoichi Ando EPFL Lausanne MPI Stuttgart CRIEPI Tokyo

Synchrotron Light

Rolf Follath Ming Shi, Luc Patthey BESSY Berlin SLS Villigen