Hybrid Mott Band Metal Insulator Transitions

Ansgar Liebsch

Institute for Solid State Physics

Research Center Jülich

Band vs Mott Insulator \rightarrow **'Hybrid Insulators'**

Overview

Mott transition in multi-orbital materials:

- Coulomb driven inter-orbital charge transfer
- role of crystal field splitting
- suppression of orbital fluctuations
- subband filling / emptying \rightarrow MIT

Dynamical mean field theory:

exact diagonalization for multiband materials

- $Ca_{2-x}Sr_{x}RuO_{4}$ 4d⁴ orbital selective Mott transition ?
- V_2O_3 3d² Hund vs. Ising exchange ?
- LaTiO₃ / SrTiO₃
- $3d^1$ MIT in heterostructures ? $3d^{1-x}$ doping driven Mott transition ?
- Na_xCoO_2
- $3d^{5+x}$ topology of Fermi surface ?

Transition metal oxides:

$Ca_{2-x}Sr_xRuO_4$: phase diagram

Maeno (PRL 2000)

$Ca_{2-x}Sr_xRuO_4$:

- coexisting narrow and wide bands: U/W_i ??
- orbital selective Mott transitions ? (Anisimov et al)
- crystal field splitting among t_{2g} bands ! (Fang et al)
- Sr \rightarrow Ca: octahedral distortions

Dynamical mean field theory

$$G(i\omega_n) = \sum_k \left(i\omega_n + \mu - H(k) - \Sigma(i\omega_n)\right)_{ij}^{-1} \quad (t_{2g})$$
$$G_0 = (G^{-1} + \Sigma)^{-1}$$

exact diagonalization: solid \rightarrow cluster = impurity + bath $G_{0,i}(i\omega_n) \approx G_{0,i}^{cl}(i\omega_n) = \left(i\omega_n + \mu - \varepsilon_i - \sum_{k=4}^{n_s} \frac{|V_{ik}|^2}{i\omega_n - \varepsilon_k}\right)^{-1}$

cluster Hamiltonian

$$H^{cl} = \sum_{i\sigma} (\varepsilon_i - \mu) n_{i\sigma} + \sum_{k\sigma} \varepsilon_k n_{k\sigma} + \sum_{ik\sigma} V_{ik} [c^+_{i\sigma} c_{k\sigma} + \text{H.c.}] + \sum_i U n_{i\uparrow} n_{i\downarrow} + \sum_{i < j\sigma \le \sigma'} (U' - J\delta_{\sigma\sigma'}) n_{i\sigma} n_{j\sigma'} - \sum_{i \ne j} J [c^+_{i\uparrow} c_{i\downarrow} c^+_{j\uparrow\downarrow} c_{j\uparrow} + c^+_{i\uparrow} c^+_{i\downarrow} c_{j\uparrow} c_{j\downarrow}]$$

cluster Green's function:

$$G_{i}^{cl}(i\omega_{n}) = \frac{1}{Z} \sum_{\nu\mu} \frac{|\langle \mu | c_{i\sigma}^{+} | \nu \rangle|^{2}}{E_{\nu} - E_{\mu} - i\omega_{n}} [e^{-\beta E_{\nu}} + e^{-\beta E_{\mu}}]$$

$$= \frac{1}{Z} \sum_{\nu} e^{-\beta E_{\nu}} \left(\sum_{\mu} \frac{|\langle \mu | c_{i\sigma}^{+} | \nu \rangle|^{2}}{(E_{\nu} - E_{\mu}) - i\omega_{n}} + \sum_{\mu} \frac{|\langle \mu | c_{i\sigma} | \nu \rangle|^{2}}{(E_{\mu} - E_{\nu}) - i\omega_{n}} \right)$$

assumption: cluster self-energy \approx solid self-energy:

$$\Sigma^{cl} = 1/G_0^{cl} - 1/G^{cl} \approx \Sigma$$

H^{cl} sparse: Arnoldi algorithm $n_s = 12$ N = 853776level spacing < 1 meV \rightarrow finite size effects reduced ED/DMFT for realistic t_{2g} materials, Hund exchange complementary to QMC/DMFT Perroni, Ishida + A.L. PRB (2007)

Ca_{2-x}**Sr**_x**RuO**₄ **nature of Mott transition ?** Sr \rightarrow Ca : n_{xy} increases : crystal field Δ Fang et al (2004)

dyn. correl.: $n_{xy} \rightarrow 1$ A.L.+ Ishida, cond-mat/0612539 PRL(2007) suppression of orbital fluctuations: MIT in half-filled xz,yz band \rightarrow no orbital selective MIT future: role of octahedral distortions ? magnetic phases ?

Ca₂**RuO**₄ cluster spectra $\Delta = 0.4 \text{ eV}$

gap between filled xy and xz,yz upper Hubbard band

 $\mathbf{3d}^2$ V_2O_3

ED vs QMC

Keller et al, PRB (2004)

A.L. (2007)

dynamical correlations: $n_{a_g} \rightarrow 0$, MIT in half-filled e'_g suppression of orbital fluctuations

LaTiO₃ $3d^1$

Pavarini et al, PRL (2004)

A.L. (2007)

dynamical correlations: $n_e \rightarrow 0$, MIT in half-filled a_g suppression of orbital fluctuations

quasi-particle spectra: LaTiO₃ V_2O_3

Pavarini et al (2006)

Poteryaev et al, cond-mat/0701263

excitation gap: LaTiO₃: LHB $a_g \rightarrow \text{empty } e_g \text{ bands}$ V₂O₃: LHB $e_g \rightarrow \text{empty } a_g \text{ band}$

 $\begin{array}{ll} n_{\sigma} \approx (0.8, 0.6, 0.6) & n_{\sigma} \approx (0.2, 0.4) \\ \rightarrow (1.0, 0.5, 0.5) & \rightarrow (0.0, 0.5) \end{array}$

 $\begin{array}{ll} n_{\sigma} \approx (0.2, 0.4, 0.4) & n_{\sigma} \approx (0.3, 0.1, 0.1) \\ \rightarrow (0.0, 0.5, 0.5) & \rightarrow (0.5, 0.0, 0.0) \end{array}$

n=4

n=2

n=1

 $La_{1-x}Sr_xTiO_3$ $3d^{1-x}$ doping driven MIT

LaTiO₃ / SrTiO₃ heterostructures: La / Sr interdiffusion: $3d^{0.95}$ inhibits $e_g \rightarrow a_g$ charge transfer: no MIT thin LaTiO₃ layers on SrTiO₃: cubic symmetry shifts U_c upwards \rightarrow no MIT at U_{Ti}

A.L. (2007)

Na $_{0.3}$ **CoO** $_2$: topology of Fermi surface ?

 t_{2g} bands 0.4 a_g holes 0.3 e'_g holes

D.J. Singh, PRB (2000)

 e_1 hole pockets not seen in ARPES ??

$Na_{0.3}CoO_2$ QMC vs ED/DMFT

Coulomb driven inter-orbital charge transfer for J = U/4

dynamical correlations:stabilization of e_g hole pocketsQMC:Ishida, Johannes + A.L. PRL (2005)ED:Perroni, Ishida + A.L. PRB (2007)

$Na_{0.3}CoO_2$ LDA + U

Ishida, Johannes + A.L. PRL (2005)

 $\Delta \epsilon_a = 2/3(n_e - n_a)(U - 5J)$ $\Delta \epsilon_e = -1/3(n_e - n_a)(U - 5J) \rightarrow J=0.9 \text{ eV}: U_c=4.5 \text{ eV}$ subtle balance:

J vs U, shape of DOS, dynamical vs static correlations

$Na_{0.3}CoO_2$ QMC + crystal field

 $\Delta = \epsilon_a - \epsilon_e$: e_g bands shifted down J=0

role of H(k) !

Marianetti, Haule, Kotliar, cond-mat/0612606

 $Na_{0.3}CoO_2$ ED vs QMC same H(k)

A.L. (2007)

Marianetti, Haule, Kotliar, cond-mat/0612606

$Na_{0.3}CoO_2$ ED

H(k) Zhou et al, PRL (2005)

A.L. (2007)

BaVS₃

J = U/4 VS J = U/7

Lechermann et al, PRL (2005)

local Coulomb correlations can reduce / enhance orbital fluctuations !

LaTiO₃ vs **BaVS**₃: both $3d^1$

opposite charge transfer: importance of density of states!

$Na_{0.3}CoO_2$ quasi-particle bands vs ARPES

Perroni, Ishida + A.L. PRB (2007) ~ 30 % band narrowing: $1.5 \rightarrow 1.0$ eV

Qian et al PRL (2006)

 V_2O_3

ED: Hund vs Ising exchange

Ising: nearly localized e_g : modifies (i) a_g self-energy (ii) intra- e_g scattering (see: two-band model !)