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Abstract of talk on April 10 2007, opening the seminar period:

1) Brief tutorial on ARPES and retrospective on corpes05
Available in extended version under URL
http://www-crismat.ensicaen.fr/ecoleneem/ARPES.pdf

2) Brief introduction to the Continued Fraction Method: « CFM »
 Available in extended version under URL
http://www.mpipks-dresden.mpg.de/~corpes05/index.html

3) Generics of « Kinks and waterfalls »:
Momentum dispersion of ARPES features, interference of coherent and
incoherent propagators, dynamical weight transfer.
An extended version is presented in the following 30 panels, taking
numerous discussions during the entire corpes07 event into account,



On the generics of
« kinks » and « waterfalls » in
ARPES Outline

 Intrinsic photocurrent (Hedin-Lundquist)
 Green function for the photo hole and Fermi liquid fixed point
 Intrinsic background function Gb(k,ω) and « incoherent » part
 Covergence radius of the FL expansion in terms of Gb(k,ω)
 Role of « active » low energy spectral weight Q>Z, construction

of a generic scenario: Parameter Z*=Z/Q
 Extrema in the energy distribution curve(EDC): General eqs.
 Evolution of extrema within the generic scenario: Role of Z*
 Microscopic backup: How to estimate Q
 Microscopic backup: Details on Hubbard models, solved with

the continued fraction method. Comparison w/ other methods
 Outlook on possible collaborations and conclusion

On the generics of
« kinks » and « waterfalls »

in ARPES
Outline:



ARPES theory and Green function formalism
Intrinsic, angle resolved photo current in the sudden approximation

For a derivation of Hedin’s sudden approximation, see e.g.:
     “A short reminder”

       (3 panels)

Does the limit of the Fermi Liquid manifest itself in the dispersion of ARPES
features ? To answer this question, we analyse the extrema of A<

λλ(k,ε)

ε Mf λ A<
λλ(k,ε) Mλf

The spectrum of outgoing photoelectrons in plane wave states If> depends on the conserved
component of momentum k and the binding energy ε. The orbital If> is correlated, via the matrix
element Mfλ, with a photohole in the orbital  Iλ>. The fermionic removal spectrum A<

λλ is obtained
from a diagonal Green function Gλλ(k,ω). The “one-step” formula…

…reflects quantum coherence among photohole and photoelectron.
Matrixelement and removal spectrum both depend on the photon field.

ε ε

After decomposing the annihilation operator for the photohole in any convenient
basis {i}: cλ=Σ uλici , a more familiar form of the one-step theory is obtained:

 Intrinsic removal spectra A<
ij. Off-diagonal terms, causing interference.

 Dependence on the photon field transferred to the matrix elements Mfi=Mfλuλi.



Quasiparticle (QP) resonances in a single band
Momentum k on a FS crossing path parametrised by η∼k-kF

Intrinsic spectrum Aii(η,ε) stripped of all perturbations:
Ballistic limit, T=0, no phonons, no defects

*  A stack of idealised Energy
Distribution Curves (EDC’s). The
evolution of lineshapes signals an
asymmetric background. This
example is characteristic for a hole
doped Hubbard model [1,3-5]
*  As η increases, the limit of the
Fermi Liquid (FL) regime is reached
more quickly for η<0 than for η>0
*  The immediate Fermi Surface (FS)
crossing of the QP is nevertheless
particle-hole symmetric
*  We calculate analytically the
trajectory of various intensity
minima and maxima in the plane
(η,ε), inside the FL regime and
beyond.



*  Lamellar material  with well develpoed QP resonances

*  Used as “benchmark”  for testing  ARPES beamlines

*  Damping coefficient ß [2] in the intrinsic FL spectrum:
   Lack of agreement on its value over many years.
    <---- Example: Phonons + defects + convolution with
    various resolution functions; all not enough to explain
    the T=0  “offset” in the width Γ at kF

E.Krasovskii corpes07 seminar talk
(see also PRL 98, 217604)

*  Ab initio calculation of matrix elements explains «offset» in Γ
   as well  as variation of lineshape with the photon field    ---->
*  Importance of broadening by non-conserved component of k

   QP resonances in a real material: TiTe2
nnn

Difficulty to extract information on the QP from EDC- or MDC- lineshapes

Perfetti et al.
PRB 64, 115102 (2001)

Comment: Various setbacks all along this challenging TiTe2 quest were not in vain.
They helped sharpening the tools for a more quantitative analysis (Conclusion of [4])

Latest update of a long quest:
“One-step formula + sudden aproximation achieves quantitative job”



FL fixed point (1)
Gapless excitations and Fermi surface

The FL, wether weakly correlated or
strongly correlated,

is characterized by coherent
gapless excitations that live on a FS

and disperse with momentum k-kF. The propagator for
particle addition or particle removal

Gc
 (k,ω) = Ζk/(ω - ε∗(k))

is defined in terms of the QP weight Ζk
and QP energy ε∗(k)

The FS in k-space is defined by all points
where: ε∗(k)=0

« FL fixed point »
(3 panels)



FL fixed point (2)   
Difference between weakly and strongly correlated FL

Ζk≈1 Pauli sumrule for fermions nearly exhausted by QP weight alone
ε∗(k) ≈ Ζk(Εk - ΕkF) = Ζkεk QP energy weakly renormalized,

relative to an uncorrelated excitation in a Bloch band

Strongly correlated:
Ζk<<1 QP weight far from exhausting Pauli sumrule
ε∗(k)= Ζkηk     ηk=(Εk - ΕkF + Σ(k, ω=0))

QP energy affected by a « selfenergy shift »
Simple connection to a Bloch band is lost 

Correlated FS (locus of ε∗(k) = 0) 
can differ from uncorrelated FS (locus of Εk = ΕkF )

      Weakly correlated:      



FL fixed point (3)
QP picture and microscopic Green function of the photo hole

Gλλ
-1 (k,ω) = ω - εk- Σ(k,ω)

Expand Σ(k,ω) = Σ(k,0) + αkω + δΣ(k,ω)

 All terms beyond first order are summed up in δΣ(k,ω).
Neglect these to obtain the “coherent part” :

Gc
-1 (k,ω) = (ω / Zk ) - ηk

∗  QP-weight:   Zk=(1-αk)-1 QP-energy:  ε∗(k)= Ζkηk
*   In the diffusive regime, ηk= εk + Σ(k, 0) is complex

In the presence of defects, Im Σ(k,0) does not vanish even at T=0
(Taken in account as “offset” in some of the following results). Then,
the coherent spectral peak has a residual Lorentzian width and the
FS-crossing is not sharply defined (no discontinuity in n(k) at Reηk=0).

∗   A real Σ(k,0) is only possible in the ballistic regime:
    Temperature T=0, absence of residual defect scattering
*   “The FL fixed point is hard to approach experimentally!” 



  Beyond the FL fixed point (1)
Reconsider the full Green function, describing also the

decay of the QP by many body effects

Gλλ
-1 (k,ω) = Gc

-1 (k,ω) - δΣ(k,ω)
∗ The coefficient of the leading term: δΣ(k,ω)≈(iβkω2), scales the the

strength of strength of QP damping QP damping ΓΓkk= ß’(ZkReηk)2, ß’= (ZkReβk) 
Terms such as ω2ln(ω) in 2d can fragilise, but not destroy the FL.

∗ To recover the missing weight 1- Zk and fully “dress” the damped
QP, δΣ(k,ω) has to be determined up to the limit of large ω.

* We focus our attention on δΣ(k,ω) in the interval around ω=0.
Our objective: Determine the immediate limit of the FL regime.

The continued fraction method (CFM) enables to obtain δΣ (k,ω)
for a given Gc

 (k,ω) via a high energy  expansion of Gλλ(k,ω).
First presented at the SNS meeting in Stanford (1995) [1] and
applied to Ti Te2 [2], it has since been developed into a useful
link between microscopic theory and phenomenology [3-5].

« Beyond
the FL
fixed

point »
(4 panels)



Beyond the FL fixed point (2)
 A central role in our analysis is played by the

background function

Consider the Laurent expansion of

1/(ω − αkω − δΣ(k,ω)) = Zk/ω + Gb(k, ω)

The « background function » Gb(k,ω) is the normal
part, after the pole singularity has been  isolated.
Gb(k,ω) itself can be expanded in a Taylor series

The physical origin of intrinsic background is the coupling of the
propagating fermion to collective (« bosonic ») modes.

These modes can originate in the electronic subsystem itself
(examples: spin and charge fluctuations in the Hubbard model,

plasmons in the case of long range Coulomb interaction)
or in the coupled electron-lattice system.



Beyond the FL fixed point (3)
              Rigorous definition of the « incoherent » propagator Ginc (k,ω),

in agreement with causality

The shift ηk≠0 in the denominator causes a distance from the
FL fixed point. Near a FS crossing, one has:  Reηk~ k-kF. This

is the generic cause for momentum dispersion of spectral
features, irrespective of additional k-dependence in Gb(k,ω).

The shift affects both parts of the Laurent expansion.
Therefore, the incoherent propagator:

Ginc
-1 (k,ω) = Gb

-1 (k,ω) - ηk,
is defined in exact analogy to the coherent one:

Gc
-1 (k,ω) = (ω / Zk ) - ηk.

Both are advanced (or retarded) functions with Herglotz
property. In this work, the advanced propagators are used.

Ginc(k,ω) disperses with k-kF even if Gb(ω) is independent of k



    Beyond the FL fixed point (4)
 Gc (k,ω) and Ginc (k,ω) both disperse and they are not additive

The coherent and incoherent propagators combine like
in a Fano interference formula:

Gλλ(k,ω ) =

Gc
 (k,ω)+Ginc

 (k,ω)+2ηkGc(k,ω)Ginc
 (k,ω)

1- ηk
2Gc

 (k,ω)Ginc
 (k,ω)

Note: Additivity of «coherent» and «incoherent» spectrum holds only when
both Reηk= Im ηk=0. The strongest possible interference occurs
when Imηk=0 (ballistic regime), but Reηk≠0 (away from the FS):

==>   Vanishing spectral intensity at ω=0.



   *    Poles in δΣ(ω) obey      Gb
-1 (Ω∗ ) + Ω∗ /Z = 0.

The solution Ω∗ nearest  to ω=0 sets the convergence radius.
   *    The coefficient of the leading term δΣ ≈ ißω2 is

iβ = Gb(0)/Z2

         A factor i has been pulled out, to make ß purely real in a particle-hole symmetric
      scenario [2]. Otherwise, ß is complex and the QP damping is scaled by Reß or ImGb(0).

     *    The QP’s are underdamped in the coherence interval - Δ* < ε < Δ*,
           Δ* ImGb(0) = Z

Mathematical limit of the FL regime in terms of Gb

δΣ(ω)=(ω/Z)2/(Gb
-1 (ω) + ω/Z)

Convergence radius of an expansion in powers of ω
set by the lowest lying pole in the selfenergy

Im Gb(0)≠0 is necessary and sufficient for QP damping to exist.
One can conclude:

A background spectrum, straddling ω=0, is a generic feature of the FL

These statements hold for the general case. Momentum label k is
dropped for simplicity only. However,  in the following analysis of
generic effects, dispersion other than through ηk will be neglected.



 Electronic structure with gaps
      « Active » low energy weight and generic background model

      * The convergence radius Ω* of the FL expansion is given by the
solution Ω∗ = -Z/Gb

 (Ω∗) that is closest to the origin.
In the limit Z<<1, Ω* becomes part of the low energy scenario.

       * In the presence of gaps, the spectral sector that straddles the
Fermi edge dominates the solution. We therefore define the 
“active” weight Q as the integrated spectral weight in the low
energy sector, including Z: Z < Q ≤ 1. The case without gaps is
represented by the limit Q=1. 

      * For a generic model, we assume that the active background has no
finestructure and can be modeled by a single pole Ω. The solution for
Ω* is then unique. Given Z and Q, Ω* and Ω can both be expresssed by
Gb(0) (i.e. by the complex coefficient β), with between them the relation

      QΩ*=ZΩ. 

•

Note: Weakly correlated systems with screened Coulomb interaction already have
Q considerably below 1, due to plasmon satellites. (GW approximation of Hedin).

We shall discuss the case of competing solutions in the concluding remarks



* Background approximated by a
complex pole ω=Ω, weight   Q-Z.

* Gb
-1 (ω) + ω/Z=0    yields

solution   Ω*=Z*Ω for the
selfenergy pole.

* Figure from ref. [2]. Particle-hole
symmetric case,  Ω=iΔ :
(a) spectrum at kF, (b) trajectories
of the 2 poles in G(k,ω), for ηk≤0,
ballistic regime, β’ =Zβ=1/ ∆*.

Z*=Z/Q controlls the dispersion changes at the limit of the FL :
1/2≤Z*<1: Mild crossover in EDC or MDC peak dispersions. Z*≈1/2 applies to the

Hubbard model at n=1. (Recent DMFT study: Byczuk et al., Nature Phys.3, 168(2007))
1/4≤Z*<1/2:  Crossover sharpens into « kink ».  The low energy QP pole no longer

participates in the dispersion. It « bends back » (as shown in the figure).
Range Z*<1/4: Peak-dip-peak feature or «waterfall», a discontinuity in the EDC.

Generic scenario for « active » background [2] yields
ZδΣ(ω) = (1 - Z*)ω2 /(ω - Z*Ω)         Z< Z*=Z/Q <1

We proceed with a detailed discussion of these phenomena



Extrema in the spectral function of the photohole
Aλλ(k,ε)=π-1Im Gλλ (k,ω=ε-i0+)

        Gλλ
-1(k,ω=ε-i0+)=X(ε)-iY(ε),     X’(ε)=dX/dε   

    and Y’(ε)=dY/dε  
Extrema in A(k,ε) as function of ε obey the condition

Y’(X2-Y2)-2X’XY=0.
Since this equation is quadratic in X, it can be explicitly solved
for   Reηk, as function of binding energy ε. The plot has one or
several vertical asymptotes, depending on the richness of the

spectrum. Its inverse indicates all possible branches of extrema
or inflexion points at a given Reηk. Provided the relation

Reηk=F(k) can be inverted along a FS crossing path and other
k-dependences are negligeable, the extremal lines over the plane
(Reηk,ε≤0) become a plot for the dispersion of peaks or dips in a
sequence of EDC’s at T=0. Inclusion of the Fermi function, for an

evaluation of extrema in A<(k,ε) at finite T is straightforward.



Evolution of features along a « path » in k-space
ARPES data are most often represented in a two-dimensional plot over

the plane (emission angle, binding energy)

Near a FS crossing, dominant k-dependence is caused by Reη~(k-kF).
To take advantage of this fact, I have proposed the following fitting procedure :

* Evaluate Zk and δΣ(k,ω) « on the FS » i.e.: They may depend on the
crossing point kF, but not on the direction « perpendicular » to the FS.  This
allows to overcome, at least partly, the limitation of the « infinite dimensional »
solutions ( e.g.: DMFT ), which have identical Z and δΣ(ω) everywhere in the
Brillouin zone.
* Linearise Reη≈v(kF)(k-kF), where v(kF)=v0(1+γ(kF)) allows for  the
« k-mass-renormalisation » (originating from   Σ(k,0)]) of the bandstructure
velocity v0. The overall effective Fermi velocity (slope of the observed QP
dispersion) is v*=v0(1+γ)/(1-α) = v0(1+γ)Z. In infinite dimension, only the factor Z
from the     « ω-mass-renormalisation  » survives. By this ansatz, we avoid
another, even more constraining limitation of DMFT [3].
* For our generic scenario of δΣ(ω), the functions X,X’,Y,Y’ are easily
found analytically. Representative examples are shown in the following 3
panels. The key parameter, controlling the changes in dispersion at the limit of
the FL regime, is the ratio Z*=Z/Q. Τhe energy scale is Ω*, the pole in δΣ(ω). 







Thick lines: Peaks and dips of the EDC
Thin lines with dots: Peak of the MDC

Energy unit: Distance of nearest
selfenergy pole from ω=0.

From crossover to “kink” and “waterfall” (1)
ARPES sector, particle-hole symmetric case, T=0, Imη=0 (No “offset”)
Plotted functions : Maxima and minima of A(η,ε) as function of ε (« EDC »).

For comparison: Maximum of A(η,ε) as function of η (« MDC »).
 Near the FS crossing: η~k-kF.η<0: « occupied » part of Brillouin zone

*   As Z* is lowered, the crossover
    sharpens, discrepancy between
    EDC- and MDC- peak increases.
*   For Z*<1/4, the multivalued 
    portion (arrows) signals a peak-
    dip-peak sequence of extrema,
    possibly related to the «waterfall»
    phenomenon in ARPES

 -

η>0: « unoccupied » part of BZ
*   Background, straddling the 
    Fermi edge, is observable as a
    separate dip-peak structure in 
    the EDC ( «spectral transfer»).
*   The dip (locus ε=0) signals
    vanishing intensity by total     
    interference.



Re

Influence of a small, finite “offset” ImΣ(k,0)≠0, e.g. defects at T=0

Thick lines: Peaks and dips of the 
EDC. Thin lines: Peak of the MDC.
Energy scale: Distance from ω=0 of 
nearest pole in the selfenergy 

∗    η<0: The main spectral
     features are not strongly
     changed by the « offset »
∗    η>0: The features of 
       the «spectral transfer»
       are strongly  influenced
       by  the « offset »
*   Near kF (Reη=0), spectral
    transfer no longer observable
    as a distinct  dip-peak
*  For sufficiently small « offset »,
    transferred dip-peak reappears
    at finite Reη, (For a discussion,
    see Ref. [4], below eq.(25))

From crossover to “kink” and “waterfall” (2)
ARPES sector, particle-hole symmetric background. 



Now plotted: EDC extrema in the
ARPES as well as  ARIPES sector

Energy scale: Distance of 
selfenergy pole from ω=0. 

* With particle-hole-symmetry,
ReΩ=0, the critical value for a
discontinuity in the peak
dispersion is Z*=1/4. Here, the
« kink » is most pronounced

* Keeping Z*=1/4, what is the
effect of a shift ReΩ<0 in the
background pole ?
   * ARPES sector: Enhanced
background favours discontinuity
    * ARIPES sector: Depleted
background leads to a softening
of the « kink »

From crossover to “kink” and “waterfall” (3)
ReΩ<0 (Still T=0, no “offset”): 

Particle-hole symmetry is lifted by shifting 
     the maximum of background intensity into the ARPES sector.



Low energy weight Q:
General statements

Mixed valence: The concept of
«configurational crossover»
 (L.L.Hirst, PRB 15, 1 (1977))

allows to estimate Q in a local (atomic- or
cluster-) limit: Q≈Qat=Q>+Q<

*     Both weights, Q> (particle-like) and
Q< (hole-like), are generally non-zero,
confirming that the spectrum of weight Q
straddles the Fermi level.
*     The partial weights Q> and Q< scale
differently as function of the valence
mixing than the QP weight Z (Not
realizing this, Hirst interpreted Q as QP
weight).
*     In the presence of translational kinetic
energy (hopping), Q increases:  δQ=Q-Qat
is called « dynamical weight transfer »
(Sawatzky) M.Meinders et al. PRB 48,
3916 (1993).

Integer valence: Absence of
configurational crossover: Qat=0.
*    The local estimate for the low
energy weight vanishes. In this
case, Q is entirely due to
« dynamical weight transfer »
*    Example: Hubbard model at
half-filling.  As the « bandwidth
controlled Mott transition »  is
approached, both Q and Z vanish
together, but Q>Z still holds.

 « Dynamical weight transfer »
can only be calculated non-

perturbatively. It is crucial for
the quantitative description of

the FL regime in a strongly
correlated metal.

Microscopic
backup

(7 panels)



Hubbard model:

 How is dynamical weight transfer taken into account in determining Q ?
Away from half-filling (doping): Key quantity is a hopping contribution to the

« skewness »: (ω3- ω1)/s2 [5].
At half filling: Since ω 3= 0, key quantity is (s4)2, linked to « excess kurtosis ».

Beginning of the continued
fraction (high energy)

expansion: Spectral moments
up to M4. Sumrules.

Truncation by a terminator
allows to make the low energy
FL expansion, keeping all the

sumrules intact.

 The algorithm for a FL terminator Ω(ω) distinguishes our CFM from approximations
that are based on high energy expansion alone. More generally, the algorithm can

be applied after an arbitrary number of stages in the continued fraction, conserving
higher spectral moments [4] (e.g. as generated by the Lanczos method).

Background function Gb(ω)  calculated with
the continued fraction method (CFM) [1,3-5]



Hubbard models
approaching the Mott transition

Known facts about quasiparticles in
the DOS (integrated density)

Half-filled case: DOS from
DMFT+NRG at T=0,
R. Bulla et al.,
Physica B 259-61, 721 (1999).

Hole doping:
DOS from CFM at T=0.
Reference [5].

In both regimes, the damping
coefficient Reβ scales like Z-2 (see inset
above for 1/2-filled case ). Concerning
the symmetry of the background and
the range of our control parameter

Z*=Z/Q, the two regimes show
essential differences (following panels).

Z-->0
Q-->0
Z*≈1/2

Z-->0
Q-->1/2
Z*-->0



Background and Z* in the half-filled Hubbard model
Sumrule of the kurtosis: κ=M4/(M2)2={(s2)2 + (s4)2} / (s2)2

Given Z and the two scaling invariants, the terminator Ω(ω) of the CFM can be
calculated [4]. The central part of the background is well approximated by a
dominant pole on the imaginary axis (see figure), confirming the scenario in

reference [2]. For  Z* ≈ 1/2, the crossover in the dispersion at the limit of the FL
is quite gentle (see panel 18). Since Q and Z are both small, there is still a
strong mass enhancement outside the FL regime. This case was recently

studied numerically by Byczuk et al., Nature Phys. 3, 168 (2007).

 Weight of low energy central peak
Q = (κ−1)/κ     « 3-level system »
Insulator:  κ--> 1     « 2-level system »
Condition of validity: Central peak
well separated from Hubbard peaks

 Within DMFT + NRG, one finds two
invariants as Z-->0 (See Bulla et al.,
preceding panel) :
a) Z/Q = Z*, with  Z* ≈ 1/2
b) Z2β = Z/∆* = -iGb(-i0+) ≈ 2/Uc,
with Uc the critical Hubbard U.



Midgap DOS in the half-filled Hubbard model

 The excess kurtosis
γ = κ-1 = (s4)2/(s2)2  and the slope
α= dΣ/dω = -(1-Z)/Z are nearly
inversely proportional:

 With α , γ and Z*=Z/Q, one can
form a « super »-invariant

     Q+αγZ=0
 Exact for small Z, this relation

holds qualitatively all the way to
Z=1. Correction factors of order 1
depend on the detailed hopping
Hamiltonian

Inserting this invariant in the CFM equation [4], one obtains a canonical solution for the
central spectrum in the half-filled Hubbard model, valid up to Z≈1/2.   The coherence

energy   ∆*=(Zß)-1 scales like Z/(1-Z). The dips, at ε=±s4, scale like Z1/2. Breakdown of this
approximation for Z>1/2 is signaled by the fact that dips and side bands fail to coalesce.

A T=0 (ballistic) scenario for 0 ≤ Z <≈1/2
(Specific U=0 input in the plot: Semi-elliptic DOS)

..



CFM solutions at T=0 [5] for hole doping 0<X<1 (Filling n=1-X<1)

The CFM results for δZ are comparable to DMFT+NRG, those for δQ are
even superior, because moment sumrules are obeyed rigorously [5].

* The atomic limit Qat=(1+X)/2 yields a lower
bound for the « active » spectral weight Q. The
dynamical weight transfer δQ(X)>0 vanishes
linearly for X-->0 and also vanishes identically
for U>>Uc .

    Q=Qat+δQ(X)>(1+X)/2
* The Gutzwiller-Brinkmann-Rice
approximation ZGW=2X/(1+X) yields an upper
bound for the QP weight Z. The correction δZ<0
vanishes linearly with X but does not vanish
identically for U>>Uc .

    Z=ZGW+δZ(X)<2X/(1+X)
* Qat and ZGW yield an upper bound for Z* that
vanishes linearly with X:

    Z*=Z/Q<ZGW/Qat =4X/(1+X)2

Background and Z* in the doped Hubbard model



 Doping controlled Mott transition:
As Z*-->0, the FL regime becomes “precarious”!

Background weight in the low energy sector largely exceeds QP weight.
The structureless Gb(ω) can be mapped onto the generic scenario.

Absence of particle-hole symmetry taken in account by ReΩ≠0.

The low energy part of Gb(ω) in the doped
Hubbard model is again well

approximated by a dominant pole [1,2] :
In the example plotted here [5],

ReGb(-i0+) ≈ ImGb(-i0+) > 0.
Then, a high energy pole Ω (background)

and  a low energy pole  Ω*=Z*Ω<< Ω
(selfenergy) both lie on the diagonal in
the upper left quadrant of the complex

ω-plane.
As Z*-->0, this mapping onto the generic

scenario predicts pronounced
discontinuities in the EDC dispersion
(see panel 20), which should also be

checked by DMFT+NRG.



Outlook:
Gb

 (k,ω) beyond the FL regime
* Strategy followed to reveal the generic behaviour: Retain only the pole Ω* in
δΣ(k,ω) that is closest to ω=0. After the crossover that marks the limit of the FL regime, the
main spectral peak then has an apparent « asymptotic » dispersion

ε≈Qη
Wether this law is obeyed in some transition interval, depends on the fine structure of
Gb(k,ω) and on the gaps. Obviously, unless Q=1, this cannot be the real asymptotics!
* In the infinite-dimensional Hubbard model, our chosen microscopic example, the
bosonic modes are local spin fluctuations, the scale Ω* is the binding energy of the
Kondo effect. The absence of other, competing modes explains that the low energy
background has negligeable finestructure. (Nevertheless, at half-filling, DMFT+NRG data
seem to indicate a small splitting into two particle-hole symmetric poles).
* In Hubbard models at finite dimension, even more so in Hubbard-Holstein type
models (adding electron-phonon coupling) competing bosonic modes can cause several,
momentum dependent selfenergy poles to « invade » the low energy sector. Theory and
experiment on strongly correlated materials have to cope with this situation.

The CFM offers a hands-on procedure to parametrise the non-universal behaviour
beyond the FL and thus interprete complex ARPES spectra. The connection to moment

sumrules gives access to microscopic interpretations in terms of static correlation
functions, dictated by (i.e.: also bound to change with…) the choice of a Hamiltonian.



Comments for experimentalists who wish to model ARPES peaks with

Gλλ(k,ω) ≈ Z/{ω - Zηk - ZδΣ(kF,ω)}
* Keeping Z and δΣ(kF,ω) k-independant on a given FS-crossing

path, but allowing them to depend on the choice of the crossing
point kF, is a well founded approximation. The data analysis can
thus be carried beyond DMFT, e.g. to low dimensional systems.
Using the CFM, it can also be carried beyond the FL regime and
the generic one-pole background scenario that marks the
crossover to higher binding energy. Caveat: as binding energy
increases, extrinsic secondaries not included here, also grow.

* It is an experimental fact of ARPES that peak positions depend
on the photon field. This seems to exclude that the spectrum is
“intrinsic”. In fact, it is readily explained by relative changes in
the strength of matrix elements, when the photoelectron is
coupled to more than one intrinsic orbital (see panels 3 and 5).
I have given examples of multi orbital Dyson equations, for which Z, ηk and
δΣ(ω) of the photohole can be evaluated within the CFM for any set of the
dipolar matrix elements [4]. Data taken with varying photon energy and

polarisation can thus be analysed consistently.



This conclusion
was extracted 

from reference [4]

…
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