Ab Initio theories to predict ARPES
Hedin's GW and beyond

Valerio Olevano
Institut NEEL, CNRS, Grenoble, France and
European Theoretical Spectroscopy Facility
Many thanks to:

Matteo Gatti, Pierre Darancet,
Fabien Bruneval, Francesco Sottile
and Lucia Reining

Institut NEEL, CNRS, Grenoble, France and
LSI, CNRS - CEA Ecole Polytechnique, Palaiseau France
Résumé

- **Motivation:** Electronic Excitations and Spectroscopy
- Many-Body Perturbation Theory and the Hedin's GW approximation -> ARPES
- **Non-Equilibrium Green's Function (NEGF)** theory, GW approximation -> e-e in Quantum Transport
- MBPT using the Density-functional concept: vertex corrections beyond GW.
- Generalized Sham-Schlüter Equation and frequency-dependent effective local potentials.
- **Conclusions**
The Ground State

Ab initio DFT theory well describes (error 1~2%):

- Ground State Total Energy and Electronic Density
- Atomic Structure, Lattice Parameters
- Elastic Constants
- Phonon Frequencies

that is, all the **Ground State** Properties.

Vanadium Oxide, VO$_2$

<table>
<thead>
<tr>
<th>Lattice Parameters</th>
<th>DFT-LDA nlcc</th>
<th>DFT-LDA semic</th>
<th>EXP [Longo et al.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>5.659 Å</td>
<td>5.549 Å</td>
<td>5.7517 ± 0.0030 Å</td>
</tr>
<tr>
<td>b</td>
<td>4.641 Å</td>
<td>4.522 Å</td>
<td>4.5378 ± 0.0025 Å</td>
</tr>
<tr>
<td>c</td>
<td>5.420 Å</td>
<td>5.303 Å</td>
<td>5.3825 ± 0.0025 Å</td>
</tr>
<tr>
<td>α</td>
<td>121.46°</td>
<td>121.73°</td>
<td>122.646° ± 0.096°</td>
</tr>
</tbody>
</table>

M. Gatti et al.
To be published

Valerio Olevano, CNRS, Grenoble
Citation Statistics from 110 years of Physical Review

DFT Standard Model of Condensed Matter

<p>| Table 1. Physical Review Articles with more than 1000 Citations Through June 2003 |</p>
<table>
<thead>
<tr>
<th>Publication</th>
<th># cites</th>
<th>Av. age</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR 140, A1133 (1965)</td>
<td>3227</td>
<td>26.7</td>
<td>Self-Consistent Equations Including Exchange and Correlation Effects</td>
<td>W. Kohn, L. J. Sham</td>
</tr>
<tr>
<td>PR 136, B864 (1964)</td>
<td>2460</td>
<td>28.7</td>
<td>Inhomogeneous Electron Gas</td>
<td>P. Hohenberg, W. Kohn</td>
</tr>
<tr>
<td>PR 108, 1175 (1957)</td>
<td>1364</td>
<td>20.2</td>
<td>Theory of Superconductivity</td>
<td>J. Bardeen, L. N. Cooper, J. R. Schrieffer</td>
</tr>
<tr>
<td>PRL 19, 1264 (1967)</td>
<td>1306</td>
<td>15.5</td>
<td>A Model of Leptons</td>
<td>S. Weinberg</td>
</tr>
<tr>
<td>PRB 12, 3060 (1975)</td>
<td>1259</td>
<td>18.4</td>
<td>Linear Methods in Band Theory</td>
<td>O. K. Anderson</td>
</tr>
<tr>
<td>PR 124, 1866 (1961)</td>
<td>1178</td>
<td>28.0</td>
<td>Effects of Configuration Interaction of Intensities and Phase Shifts</td>
<td>U. Fano</td>
</tr>
<tr>
<td>PRB 13, 5188 (1976)</td>
<td>1023</td>
<td>20.8</td>
<td>Special Points for Brillouin-Zone Integrations</td>
<td>H. J. Monkhorst, J. D. Pack</td>
</tr>
</tbody>
</table>

Valerio Olevano, CNRS, Grenoble
Excited States

But can **DFT** describe the Excited States, such as:

- Band Gap, Band Plot
- Metal/Insulator character
- Spectral Function

![Diagram of Vanadium Oxide, VO$_2$]

Valerio Olevano, CNRS, Grenoble
Excited States

Answer: NO! DFT *cannot* in principle describe excited states, band gap and so on!

(and it cannot be blamed if it does not succeed)

Nevertheless, be careful:
- DFT for electronic structure -> photoemission spectroscopy
- DFT for optical spectroscopy
- DFT of superconductivity -> superconductivity gap
- DFT-NEGF -> quantum transport

Valerio Olevano, CNRS, Grenoble
Why we need *ab initio* theories to calculate spectra

1) To understand and explain observed phenomena
2) To offer experimentalists reference spectra
3) To predict properties before the synthesis, the experiment
Excited States *Ab initio* Theories

- **HF** (Hartree-Fock), **CI** (Configuration Interaction)
- **QMC** (Quantum Montecarlo)
- **TDDFT** (Time-Dependent Density-Functional Theory)
- **MBPT** (Many-Body Theory) in the Approximation:
 - **GW**
- **NEGF** (Non-Equilibrium Green's Functions Theory)

Photoemission

Quantum Transport

Valerio Olevano, CNRS, Grenoble
MBPT and the \textbf{GW} approximation

\textbf{vs}

\textbf{ARPES} Photoemission Spectroscopy

(Band Gap, Band Plot, Spectral Function)
Photoemission

direct photoemission

inverse photoemission

\[A = \frac{1}{\pi} |\Im G| \text{ band gap} \text{ band plot} \]

Valerio Olevano, LEPES CNRS, Grenoble
Calculating the Band-Gap: inadequacy of HF or DFT

- HF always overestimates the bandgap.
- The Kohn-Sham energies have not an interpretation as removal/addition energies (Kopman Theorem does not hold). If we use them, however we see they are better than HF but the band gap is always underestimated.
- Need to go beyond: MBPT and GW!

<table>
<thead>
<tr>
<th></th>
<th>HF</th>
<th>DFT-LDA</th>
<th>EXP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon</td>
<td>5,6</td>
<td>0,55</td>
<td>1,17</td>
</tr>
<tr>
<td>Germanium</td>
<td>4,2</td>
<td>0</td>
<td>0,7</td>
</tr>
<tr>
<td>Diamond</td>
<td>12,10</td>
<td>4,26</td>
<td>5,48</td>
</tr>
<tr>
<td>MgO</td>
<td></td>
<td>5,3</td>
<td>7,83</td>
</tr>
<tr>
<td>Sn</td>
<td>2,60</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

A. Svane, PRB 1987

Valerio Olevano, LEPES CNRS, Grenoble
What is the MBPT?

• Many-Body “Perturbation” Theory is a Quantum Field Theory, based on second quantization of operators and a Green’s function formalism.

• Advantages of the Field-Theoretic treatment:
 1. Avoids indices running on the many particles;
 2. Fermionic antisymmetrization automatically imposed;
 3. Treats systems with varying number of particles;
 4. Opens to Green’s functions or Propagators which have condensed inside all the Physics (all the observables) of the system. Spectral Function \(A(k, \omega) = \text{Im} \, G(k, \omega) \)

\[G(x_1, x_2) \text{ instead of } \Psi(x_1, \ldots, x_N) \]
MBPT in brief

- Many-Body “Perturbation” Theory does not work as a Perturbation Theory - the perturbation is not small -
- 1st order MBPT = Hartree-Fock;
- 2nd order not small, the series does not converge -> need to resort to complicated partial resummations of diagrams;
- Better functional and iterative methods: Hedin equations.
- Iterative solution of Hedin equations = exact solution of the problem!
Hedin Equations (PR 139, 3453 (1965))

\[G = G^{(0)} + G^{(0)} \Sigma G \]
\[W = v + v \Pi W \]
\[\Sigma_M = iG W \Gamma \]
\[\Pi = -iGG \Gamma \]
\[\Gamma = 1 + \frac{\delta \Sigma_M}{\delta G} GG \Gamma \]

- So far, nobody has solved Hedin Equations for a real system
- Need for approximations
Hedin Equations: GW approximation

\[G = G^{(0)} + G^{(0)} \Sigma G \]
\[W = v + v \Pi W \]
\[\Sigma_M = iGW\Gamma \]
\[\Pi = -iGG\Gamma \]
\[\Gamma = 1 + \frac{\delta \Sigma_M}{\delta G} GG\Gamma \]

Reviews on GW:
F. Aryasetiawan and O. Gunnarsson, RPP 1998
W.G. Aulbur, L. Jonsson and J.F. Wilkins, 1999

Valerio Olevano, LEPES CNRS, Grenoble
Hedin's GW Approximation for the Self-Energy

GW Self-Energy

$$\Sigma^G_W(x_1, x_2) = iG(x_1, x_2)W(x_1, x_2)$$

Dynamical Screened Interaction W

Green Function or Electron Propagator G

Hartree-Fock Self-Energy

$$\Sigma_x(x_1, x_2) = iG(x_1, x_2)v(x_1, x_2)$$

Bare Coulombian Potential v
Quasiparticle Energies

Kohn-Sham equation

\[\begin{align*}
\left(-\frac{1}{2}\partial_r^2 + v_{\text{ext}}(r) + v_{\text{H}}(r)\right)\phi_1(r) + v_{\text{xc}}(r)\phi_1(r) &= \epsilon_i^{KS} \phi_1(r) \\
\end{align*}\]

KS energies (no physical meaning)

Hartree-Fock equation

\[\begin{align*}
\left(-\frac{1}{2}\partial_r^2 + v_{\text{ext}}(r) + v_{\text{H}}(r)\right)\phi_1(r) + \int dr' \Sigma_x(r, r')\phi_1(r') &= \epsilon_i^{HF} \phi_1(r) \\
\end{align*}\]

Exchange (Fock) operator (non-local)

Quasiparticle equation

\[\begin{align*}
\left(-\frac{1}{2}\partial_r^2 + v_{\text{ext}}(r) + v_{\text{H}}(r)\right)\phi_1(r) + \int dr' \Sigma(r, r', \omega = \epsilon_i^{QP})\phi_1(r') &= \epsilon_i^{QP} \phi_1(r) \\
\end{align*}\]

QP energies

Self-Energy (non-local and energy dependent)

Exchange-Correlation potential (local)

Valerio Olevano, LEPES CNRS, Grenoble
The GW Approximation corrects the LDA band-gap problem (underestimation) and the HF overestimation and it is in good agreement with the Experiment.

The GW Approximation correctly predicts electron Addition/Removal excitations (Photoemission Spectroscopy).

Valerio Olevano, LEPES CNRS, Grenoble
GW and the Photoemission Band Gap

Adapted from Schiffelgard et al. PRL 2006
GW band plot

Graphite

J. Serrano et al, unpublished

Valerio Olevano, LEPES CNRS, Grenoble
GW spectral function

Silicon
GW (AC) Spectral Function (bands 1-8) at Γ

<table>
<thead>
<tr>
<th>Transition</th>
<th>GW</th>
<th>EXP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ1v -> Γ'25v</td>
<td>11.73</td>
<td>12.5 ± 0.6</td>
</tr>
<tr>
<td>Γ'25v -> Γ15c</td>
<td>3.23</td>
<td>3.40</td>
</tr>
<tr>
<td>Γ'25v -> Γ'2c</td>
<td>3.96</td>
<td>4.2</td>
</tr>
</tbody>
</table>

V. Olevano, unpublished
Vanadium Oxide (VO$_2$)

Phase transition at $T_c = 340$ K

- Monoclinic
- Insulator
- Paramagnetic

- Rutile
- Metal
- Paramagnetic

Mechanism? Role of correlation? Peierls? or Mott-Hubbard?

Monoclinic VO$_2$

<table>
<thead>
<tr>
<th></th>
<th>HF</th>
<th>DFT-LDA</th>
<th>SC-COHSEX</th>
<th>GW on SC-COHSEX</th>
<th>EXP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandgap VO$_2$</td>
<td>7.6</td>
<td>0</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
</tr>
</tbody>
</table>

M. Gatti et al, to be published
Vanadium Oxide (VO₂)

- Need for self-consistency
- But static GW (COHSEX) self-consistent already ok!

M. Gatti et al, to be published

From perturbative G_0W_0 corrections towards self-consistent calculations

<table>
<thead>
<tr>
<th></th>
<th>HF</th>
<th>DFT-LDA</th>
<th>GW on DFT</th>
<th>SC-COHSEX</th>
<th>GW on SC-COHSEX</th>
<th>EXP</th>
</tr>
</thead>
<tbody>
<tr>
<td>VO₂</td>
<td>7.6</td>
<td>0</td>
<td>0 !!!</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
</tr>
</tbody>
</table>
Quantum Transport and NEGF

GW approximation
and e-e scattering effects
Quantum Transport: The Working Bench

We need:
- a First Principle description of the Electronic Structure

Valerio Olevano, CNRS, Grenoble
Non-Equilibrium Green's Function Theory (NEGF)
(improperly called Keldysh)

Much more complete framework, allows to deal with:

- **Many-Body** description of **incoherent** transport (electron-electron interaction, electronic correlations and also electron-phonon);
- **Out-of-Equilibrium** situation;
- Access to **Transient** response (beyond Steady-State);
- Reduces to Landauer-Buttiker for coherent transport.

The theory is due to the works of Schwinger, Baym, Kadanoff and Keldysh
Many-Body Finite-Temperature formalism

\[\hat{H} = \hat{T} + \hat{V} + \hat{W} \]

many-body

\[\bar{O} = \frac{\sum_{i} e^{-\beta E_i} \langle \Psi_i | \hat{O} | \Psi_i \rangle}{\sum_{i} e^{-\beta E_i}} = \text{tr} \left[\hat{\rho} (\hat{H}) \hat{O} \right] \]

observable

\[\hat{\rho} (\hat{H}) = \frac{e^{-\beta \hat{H}}}{\text{tr} \left[e^{-\beta \hat{H}} \right]} \]

statistical weight
Negf formalism

\[\hat{H}(t) = \hat{H} + \hat{U}(t) = \hat{T} + \hat{V} + \hat{W} + \hat{U}(t) \]

Hamiltonian

many-body + time-dependence

\[\bar{o}(t) = \text{tr} \left[\hat{\rho}(\hat{H}) \hat{o}_H(t) \right] \quad t > t_0 \]

Observable

Statistical weight referred to the unperturbed Hamiltonian and the equilibrium situation before \(t_0 \)

Valerio Olevano, CNRS, Grenoble
\[\hat{o}_H(t) = \hat{s}(t_0, t) \hat{o}(t) \hat{s}(t, t_0) \]
Heisenberg representation

\[\hat{s}(t, t_0) = T \left[\exp \left(-i \int_{t_0}^{t} dt' \hat{H}(t') \right) \right] \]
evolution operator

\[\hat{s}(t_0 - i \beta, t_0) = e^{-\beta \hat{H}} \]
trick to put the equilibrium weight into the evolution

\[\bar{o}(t) = \frac{\text{tr} [\hat{s}(t_0 - i \beta, t_0) \hat{s}(t_0, t) \hat{o}(t) \hat{s}(t, t_0)]}{\text{tr} [\hat{s}(t_0 - i \beta, t_0)]} \]

\[\bar{o}(t) = \frac{\text{tr} [T_C [\exp (-i \int_C dt' \hat{H}(t')) \hat{o}(t)]]}{\text{tr} [T_C [\exp (-i \int_C dt' \hat{H}(t'))]]} \]

Valerio Olevano, CNRS, Grenoble
NEG F Fundamental Kinetic Equations

\[G^r = \left[\omega - H_c - \Sigma^r \right]^{-1} \]

\[G^< = G^r \Sigma < G^a \]

\[G^> = G^r \Sigma > G^a \]

Caveat!: in case we want to consider also the transient, then we should add another term to these equations:

\[G^< = G^r \Sigma < G^a + (1 + G^r \Sigma^r) G^0^< (1 + \Sigma^a G^a) \]

Keldysh equation

Valerio Olevano, CNRS, Grenoble
Quantum Transport: composition of the Self-energy

\[\Sigma^{r<} = \sum_p \Sigma_p^{r<} + \Sigma_{e\text{-}ph}^{r<} + \Sigma_{e\text{-}e}^{r<} \]

- Interaction with the leads
- Electron-phonon interaction
- Electron-electron interaction

Critical point:

- Choice of relevant approximations for the Self-Energy and the in/out scattering functions

Valerio Olevano, CNRS, Grenoble
Our Self-Energy: GW. Why GW?

Selfconsistent Hartree Fock

\[G^0W^0 \]

Direct and Exchange terms:
Band Structure Renormalization

\[G_{2}^{HF} = G + \]
\[G_{2}^{GW} = G^0 + W^0 \]

Collisional Term:
Band structure renormalization for Electronic Correlations +
e-e Scattering ->
Conductance Degrading Mechanisms, Resistance, non-coherent transport

\[\sum{>,<} = 0 \]
\[\sum{>,<} \neq 0 \]
GW and e-e scattering and correlation effects

Gold Atomic Infinite Chain

Loss of Conductance:
- Appearance of Resistance
- Appearance of Satellite Conductance Channels

Broadening of the peaks:
- QP lifetime

Valerio Olevano, CNRS, Grenoble

P. Darancet et al, PRB 2007
C / V characteristics: GW vs EXP

Gold Atomic Infinite Chain

valerio olevano, cnrs, grenoble
MBPT quantities as density-functionals: vertex corrections beyond GW
Hedin Equations

\[G = G^{(0)} + \Sigma_{M} \]

\[W = w + \Pi \]

\[\Sigma_{M} = 1 + \Gamma \]

\[\Pi = 1 \]

\[\Gamma = 1 + \frac{\delta \Sigma_{M}}{\delta V_{c}} + \frac{\delta \Sigma_{M}}{\delta G} \frac{\delta G}{\delta V_{c}} + \frac{\delta \Sigma_{M}}{\delta G} GG \Gamma \]

Valerio Olevano, LEPES CNRS, Grenoble
MBPT quantities as density-functionals: local vertex corrections beyond GW

\[\Gamma(1,2;3) = 1 + \frac{\delta \Sigma_{1,2}}{\delta V_c} + \frac{\delta G}{\delta \rho} + \frac{\delta \Sigma_{1,2}}{\delta V_c} G(5,7) G(6,8) G(7,8;3) \]

\[\Gamma(1,2;3) = 1 + \frac{\delta \Sigma_{1,2}}{\delta V_c} + \frac{\delta G}{\delta \rho} + \frac{\delta \Sigma_{1,2}}{\delta V_c} \Pi(4,3) \]

\[\Gamma(1,2;3) = 1 + \delta(1,2) f_{xc}^{\text{eff}}(2,4) \Pi(4,3) + \Delta \Gamma(1,2;3) \]

<table>
<thead>
<tr>
<th></th>
<th>Direct gap</th>
<th>LDA</th>
<th>GW</th>
<th>Local (\Delta)</th>
<th>EXP</th>
<th></th>
<th>Direct gap</th>
<th>COHSEX</th>
<th>GW</th>
<th>Local (\Delta)</th>
<th>EXP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>2.53</td>
<td>3.27</td>
<td>3.28</td>
<td>3.40</td>
<td></td>
<td></td>
<td>Si</td>
<td>3.64</td>
<td>3.30</td>
<td>3.32</td>
<td>3.40</td>
</tr>
<tr>
<td>Ar</td>
<td>8.18</td>
<td>12.95</td>
<td>12.75</td>
<td>14.2</td>
<td></td>
<td></td>
<td>Ar</td>
<td>14.85</td>
<td>14.00</td>
<td>14.76</td>
<td>14.2</td>
</tr>
</tbody>
</table>

F. Bruneval et al., PRL (2005)
Generalized Sham-Schlüter Equation: link between non-locality and frequency dependence
Sham-Schlüter Equation

\[G = G^{KS} + G^{KS}(\Sigma - V_{xc})G \]

AND

\[G^{KS}(x, x) = G(x, x) = -i \rho(r) \]

Dyson Equation

The density of the Kohn-Sham system is by construction equal to the exact density

\[V_{xc} = (G^{KS}G)^{-1}G^{KS}\Sigma G \]

Sham-Schlüter Equation, PRL (1983)

\[V_{xc} = (GG)^{-1}G\Sigma G \]

Linearised SSE

\[V_{x}^{EXX} = (GG)^{-1}G\Sigma_x G \]

Example: OEP EXact eXchange

Valerio Olevano, CNRS, Grenoble
Generalize SSE

- Spectroscopy calls for the description of new quantities (ex. bandgap), beyond the ground-state density.
- I want the simpler one-body potential V^{SF} able to provide the Green's function G^{SF} of a Fictitious (Kohn-Sham-like) system such as by construction yields the exact density AND the exact photoemission bandgap.
- You can read the bandgap for example just only on the trace of the spectral function.
Generalized Sham-Schlüter Equation

\[\mathbf{G} = \mathbf{G}^{\text{SF}} + \mathbf{G}^{\text{SF}}(\Sigma - V^{\text{SF}})\mathbf{G} \quad \text{Dyson Equation} \]

AND

\[\mathbf{G}^{\text{SF}}(x, x) = \mathbf{G}(x, x) = -i\rho(r) \quad \text{The density of the SF system is equal to the exact density} \]

AND

\[|\Im \mathbf{G}^{\text{SF}}(r, r, \omega)| = |\Im \mathbf{G}(r, r, \omega)| = A(r, r, \omega) \quad \text{The Trace of the spectral function is the exact one} \]

\[V^{\text{SF}}(r, \omega) = \int \left(\Im \left[\mathbf{G}^{\text{SF}}(r, r_1, \omega) \mathbf{G}(r_1, r, \omega) \right] \right)^{-1} \Im \left[\mathbf{G}^{\text{SF}}(r_1, r_2, \omega) \Sigma(r_2, r_3, \omega) \mathbf{G}(r_3, r_1, \omega) \right] \]

This is the real local and dynamical potential that yields the correct density and the correct bandgap!
Transforming non-locality

Hartree-Fock self-energy
on Jellium \(r_s = 2.07 \)

into frequency-dependence

Valerio Olevano, CNRS, Grenoble
Conclusions

- **GW** Quasiparticle band gaps and band plots are in *good agreement* with Photoemission spectroscopy. But the statistics is not yet quite large. We have still to see the role of self-consistence and to which extent GW works on strongly-correlated systems.

- **NEGF – GW** seems to introduce e-e scattering effects, correlation and lost-of-coherence in Quantum Transport.

- Setting MBPT quantities as *density-functionals* could be a good way to address *vertex corrections beyond GW*.

- Thank to Generalized SSE, we have introduced an effective framework which allows to get rid of the complicated *non-local self-energy* and have a simpler *on-body local potential* which yields the right bandgap. The effective potential is real but needs to be *frequency-dependent*.

Valerio Olevano, LEPES CNRS, Grenoble
The ABINIT-GW code in few words

- **The thing**: GW code in Frequency-Reciprocal space on a PW basis.
- **Purpose**: Quasiparticle Electronic Structure.
- **Systems**: Bulk, Surfaces, Clusters.
- **Approximations**: GW, Plasmon-Pole model and RPA on W, non Self-Consistent $G^0 W^{RPA}$, first step of self-consistency on W and G.

ABINIT is distributed **Freeware** and **Open Source**
under the terms of the GNU General Public Licence (GPL).
Copyright © 1999-2002 ABINIT GW group
(R.W. Godby, L. Reining, G. Onida, V. Olevano, G.M. Rignanese, F. Bruneval)