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 ●   Motivation:

 Is it possible to explain ARPES results 
(‘arc’  Fermi surface and pseudogap) 

and high-Tc superconductivity within a microscopic  theory

for an effective Hubbard model for the CuO2 plane?

●   Conclusion: 

self-consistent solution of the Dyson equation for a single 

particle Green function in the limit of strong electron 

correlations for the Hubbard model provides such a 

possibility



                 Outline 

 ●   ARPES and theory of SCES

 ●   Effective  p-d  Hubbard  model for the CuO2 plane

 ●    Projection technique for Green functions:                

    ●  Dyson equation   ● Self-energy in NCA

 ●   Dispersion and spectral functions
 ●   Fermi surface  and  arcs

 ●   Self – energy:  coupling constants and kinks

 ●   Conclusion



ARPES

“Destruction” of FS – “arc” FS “Kink”  phenomenon 

A. Lanzara, et al., Nature 412 (2001)

cupric oxychloride  Ca2–xNaxCuO2Cl2
K. M. Shen, Science 307 901 (2005). 



Theory of SCES

 ●  DMFT – q-independent self-energy,  d >> 1, (kinks –  Kollar, et al.),              

● Momentum decomposition for GF (K. Matho  et al.)                                   

● Quantum cluster theories –   (review by Maier et al. RMP 2005)              
-- Quantum MC, ED (Scalapino, Dagotto, Maekawa, Tohyama, Prelovsek)      
-- DCA  –  dynamical cluster approximation    (Hettler, Jarrel, et al.)                 
-- CDMFT – Cellular DMFT (Kotliar, Civelli, et al.)                                            
-- VCA  –  variational cluster approximation (Potthoff et al.)
-- Two-Particle Self-Consistent approach  (TPSC) (Tremblay et al.)

 ● Perturbative  technique                                                                    
--   Phenomenological approaches   (spin-fermion models)                              
.   (Pines, Norman, Chubukov, Eschrig,  Sadovskii, et al.)                                 
  --   FLEX (weak correlations, U < W)   (Bickers et al., Manske, Eremin)          
 --  Strong correlations: Hubbard operator technique:                                       
--  Diagram approach  (involved)  (Zaitsev, Izyumov, et al.)                            
--  Equation of motion method for HOs  (Mori-type projection technique)         
.   (Plakida,   Mancini, Avella, Kakehashi – Fulde, et al.)
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 Effective   Hubbard  p-d   model for CuO2 plane

Model  for  CuO2  plane: 
 Cu-3d  ( εd ) and O-2p  (εp )  hole states, 

with  Ud  > Δ  =  εp −  εd  ≈ 2 tpd ≈ 3  eV



In the strong correlation limit: Ueff = Δ > W  it is  convenient to start from the 
atomic basis within a two-subband Hubbard model in terms  of the 
projected, Hubbard  operators:

ciσ = ciσ (1 - ni -σ ) +  ciσ ( ni -σ ) =  Xi
0σ +  Xi 

-σ2,   n iσ = ciσ
†

 ciσ 

Two subbands:
LHB −  one-hole   d - like  state  l σ > :     ε1 = εd – μ

UHB −  two-hole  (p - d)  ZR singlet state:  l↑↓ >:     ε2 = 2 ε1 + Δ 

                  Xi
αβ  = l iα > < iβ l                                               

       where l α > = l 0 >,  l σ >= l ↑ >,   l ↓ >,  and  l 2 >= l ↑↓ >

Hubbard operators rigorously obey  the constraint:

         Xi
00 +  Xi

↑↑  +  Xi
↓↓  +  Xi 

22  = 1
- only one quantum state can be occupied at any site  l i >   

For these 4  states we introduce the Hubbard operators:



      Commutation relations for the Hubbard operators: 

             anticommutator for the Fermi-like operators

{ Xi 
0σ , Xj 

σ′0 }  = δi j  ( δσ′ σ Xi 
00  +  Xi

σ′σ ),    

            commutator for the Bose-like operators

[Xi 
σσ′, Xj

σ′′σ ] =  δi j ( δσ′ σ′′ Xi 
σσ – Xi 

σ′′
 
σ′ )

These commutation relations result  in the  kinematic interaction.

  Spin operators in terms of HOs:  
 S i

z = (1/2) (Xi
++  –  X i– 

–  ),  S i+ = X i+ –,     Si
– = X i– + ,

 
 Number  operator 
           N i  =   (X i++  +  X i – –)   +   2 X i

22 



The two-subband effective Hubbard model for holes

Hopping parameters for n.n. t  and n.n.n sites  t′ ,   t ′′ :

Average number of holes is defined by the chemical potential  μ:

=  1 + δ  ≤  2



Single-particle two-subband  thermodynamic (retarded) Green functions

Mori-type    projection    technique for equations of motion:

Frequency matrix – QP spectra in MFA:

where spectral weights 
for Hubbard subbands:

i d Xi
 
σ

 /dt =

orthogonality 
condition:



where  GF in MFA: 

Differentiation of the many-particle GF                                  over  t’ 
and carrying-out the projection   results in the Dyson equation: 

Eqution for GF:

where the self-energy (SE) 
is the many-particle GF

Kinematic interaction:

B21
iσσ′ =B22

iσσ′ =



Non-crossing approximation (NCA) 
for SE is given by the decoupling

Self-consistent system of equations for GF and SE

for Fermi and Bose-like operators in the two-time  correlation functions:

SE in NCA  for two Hubbard subbands reads:

The interaction is specified by the hopping parameter  t(q)  and the 

spin-charge susceptibility

where the GFs for two subbands



  

Dispersion  curves  (δ = 0.1 )   along  
the  symmetry directions                         
      Γ (0,0) →  M(π,π) → X(π,0) → Γ 
(0,0)    in  MFA    (●●●)  and  with   SE 
corrections  (contour plot)  for U=8t  

Spectrum in MFA

where

Renormalization parameters



1.  Strong spectrum renormalization by the short-range static 
antiferromagnetic correlations  (missed in DMFT )

AF spin correlation functions:

Close to half-filling,   n = 1.05,  Q2= n/2,    C1   ≈  – 0.26 ,  C2  ≈  0.16

 hopping for the nearest  neighbor sites is suppressed:                   

      α2  ≈  0.1,     tren = 0.1 t << t

So, the dispersion is given by the next nearest neighbor hopping 

ω1 (k) = 4 t′  β1  coskx cosky , β1 ≈ 1.6,   t′ren = 1.6 t′ >tren 



2. Self-energy in a static approximation  (Pines et al., Sadovskii et al.) 
In the classical limit kT >> ωs we get for the self-energy

For  κ =   1 / ξ  → 0    for the GF we get  equation (in one subband)

[G(k, ω)] –1  ≈   { ω – ε(k) – |g (k –Q)|2 /  [ ω – ε(k –Q) –  Σ (k –Q, ω) ] }

This results in the AF gap in the spectrum (neglecting Σ (k –Q, ω) )

E1,2 = (1/2) [ε(k) + ε(k – Q) ] ±   (1/2) {[ε(k) – ε(k – Q) ]2 + 4 |g(k – Q)|2 }½       

or a pseudogap for finite  ξ and finite Σ (k –Q, ω) close to X (π,0) region.

 Thus, the pseudogap appears due to AF short-range correlations             
in our theory -- dynamical short-range spin fluctuations



                    Numerical Results

The system of equations for GFs and SE was solved          
self-consistently by using imaginary frequency representation . 

Model for the dynamical spin-susceptibility function in SE

Two fitting parameters: AF correlation length ξ  and energy ωs~ J = 0.4 t 

,while constant χ0   is defined by the equation: 

where                                                       =  – 1

Spin-susceptibility shows a maximum at AF wave-vector  QAF = (π,π).



Static AF correlation functions C1,C2 and correlation length ξ 

where



Spectral function for electrons  Ael(k,ω) = Ah(k, –  ω)  where

Electron occupation numbers

where hole

numbers

where  P(k)  is the hybridization contribution.

Parameters:  t ≈  0.4 eV,  t′ = − 0.3 t, Ueff = 8 t                       

 t ≈  0.6 eV,  t′ = − 0.13 t,   t′′ = 0.16 t, Ueff = 4 t



  
Spectral functions  A(k, ω)  and dispersion  curves along  
symmetry directions  Γ (0,0) →  M(π,π) → X(π,0) → Γ (0,0) 

δ = 0.1 (T ≈ 0.03 t)                 δ = 0.3 (T ≈ 0.03 t)                  δ = 0.1 (T ≈ 0.3 t) 



  
MC study of A(k, ω)  for 8x8 cluster at  T=0.33 t, U =8t   [Grober et al. (2000)]

δ = 0.2 (T ≈ 0.03 t)                          δ = 0.1 (T ≈ 0.3 t) 

δ = 0.20 δ = 0.14



Coupling constant

λ(kF) = 7.86 at  δ = 0.1     

      λ(kF) = 3.3 at  δ = 0.3

Density of states  A(ω) :

Spectral weight transfer with doping



Fermi   surface: contour plot of equation

(T ≈ 0.03 t):  δ = 0.1 —    δ = 0.2  −−   δ = 0.3 − - - −

(T ≈ 0. 3 t):   δ = 0.1 — 

Electron occupation numbers n el (k) = 1 - n h (k) 

     δ = 0.1 (T ≈ 0.03 t)             δ = 0.1 (T ≈ 0.3 t)                 δ = 0.3 (T ≈ 0.03 t) 

Δ n ≈ 0.15                              Δ n ≈ 0.45                            Δ n  ≈ 0.55



Fermi   surface:  maximum values  of   A(el)(kF, ω = 0) 

(T ≈ 0.03 t):      δ = 0.1              δ = 0.2                     δ = 0.3



Numerical solution for Ueff = 4t 

 δ = 0.05     (T ≈ 0.03 t)               δ = 0.3  (T ≈ 0.03 t) 

δ = 0.05                    δ = 0.1                     δ = 0.1    
(T ≈ 0.03 t)            (T ≈ 0.03 t)             (T ≈ 0.3 t) 

Fermi surface:  A(k, 0)=0 (T ≈ 0.03 t):  
δ = 0.1  —    
δ = 0.2  −−   
δ = 0.3 − - - 

(T ≈ 0. 3 t):   
δ = 0.1 — 



Self-energy:    real (---)  and   imaginary (---) parts  
at   Γ(0,0),    S(π/2,π/2),   and   M(π, π)  points  of  BZ 



“Kink” in the dispersion curves

Μ(π,π) → Γ(0,0)       Μ(π,π) → X(0, π)
Dispersion along symmetry directions  
at doping  δ = 0.1 

Μ(π,π) → Γ(0,0)       X(0, π) → Γ(0,0) 
Dispersion along symmetry directions
at doping  δ = 0.3   

No well defined  kink energy due  a continuum spectrum of spin 

fluctuations up to   ωs~ J = 0.4 t ~ 160 meV



Numerical solution (direct diagonalization) of the SC gap equation

φ(k, iωn)  = − T ∑
q
 ∑

m K (k − q, q | iωn , iωm )  F (q, iωm)      

K (k − q, q | iωn , iωm ) = [ J (k − q)  +  λ(q, k − q | iωn − iωm) ] F (q, iωm)

for the linearized anomalous GF  

F (q, iωm) = − G (q, − iωm) φ(q, iωm) G (q, iωm) 

with interaction     λ(q, k − q | iωn ) = − |t (q) |2  χs (k − q | iωn ) 

Tc ~ 0.02t 

~100 K

 Tc

results in   d-wave pairing:



Conclusion

The  proposed  microscopic  theory provides an explanation 
for doping and temperature dependence of electronic spectrum in
cuprates as  controlled by the AF spin correlations.

Self-consistent solution of the Dyson equation for  GF  and    SE       
in NCA reproduces the gross features of the electronic spectra:         
--  pseudogap formation and arc-type FS in the underdoped region,   
-- doping dependence of the dispersion and QP weight at the FS,      
--  weight transfer of the subband  spectral density  with doping  

To perform quantitative comparison  with ARPES data  contributions 
from charge fluctuations and electron-phonon interaction should be 
taken into account                                                                                

●

●

●

Publications:   N.M. Plakida, et al. JETP 97, 331 (2003). Exchange and spin-
fluctuation mechanisms of superconductivity in  cuprates.   
N. M. Plakida, V. S. Oudovenko, JETP  104, 230 (2007):  Electronic spectrum 
in high-temperature cuprate superconductors.



M.V.Sadovskii (1974):  “Toy” 1D  pseudogap model  (2D -- hot spots ) 

M.V.Sadovskii  et al. (2005):    DMFT +  Σk approach

where



Pseudogaps in strongly correlated 
metals: A generalized dynamical 
mean-field theory approach

Sadovskii et al.
Phys. Rev.  B 72, 155105 (2005)

DMFT + Σk calculations for 

U = 4t and n = 0.8.

E. Z. Kuchinskii et al.,
JETP Letters, 82, 198 (2005)

DMFT +  Σk calculations for 

U = 4t and n = 0.8 
 (ξ  = 10, Δ = 2t)



Spectral function for the t-J model in the symemtry direction

     Γ(0,0) → Μ(π,π) at doping  δ = 0.1 (a) and δ = 0.4 (b) .

           Comparison with  t-J model
N.M. Plakida, V.S. Oudovenko, Phys. Rev. B  59, 11949 (1999)

 Electron spectrum and superconductivity in the t-J model  at moderate doping. 

                           1. Spectral functions  A(k, ω)



Self-energy for the t-J model in the symemtry direction

    Γ(0,0) → Μ(π,π) at doping  δ = 0.1 (a) and δ = 0.4 (b) .

2.  Self-energy, Im Σ(k, ω)



    Electron occupation numbers for the t-J model in the quarter 
    of   BZ, (0 <  kx, ky < π)   at doping  δ = 0.1 (a) and δ = 0.4 (b) .

3. Electron occupation numbers N(k) = n(k)/2


