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Problem of 3-dim k in ARPES

- Final-state dispersions

crystal | vacuum

E|
bulk photoexcitation: L_(},-»  €scape Into vacuum :
k =Kf k,=K,+g,butk, =K,
T
! k | K
Er —/i// b Kh
k ! i

e resolving 3-dim K requires final-state E(k,)
¢ low energies: non-free-electron and excited-state self-energy effects in the final states



Problem of 3-dim k in ARPES

- Final-state damping

o
lifetime damping inr, = PE signal by averaging
broadening Ak, = 2Imk, k, of E(k,) within Ak,

e Ak, broadening = intrinsic k, resolition
e spectral peaks # true quasiparticle E(k): intrinsic accuracy of 3-dim band mapping



Problem of 3-dim k in ARPES

- Two sides ""universal'' curve
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o ARPES regimes: E(k) (Ak, <<k, B%) — 1-dim DOS (Ak, >> k,B%) — E(Kk)
(Feibelman & Eastman, 1974)

e low energies: non-free-electron and self-energy effects in the final states by
Very-Low-Energy Electron Diffraction (VLEED)

e high energies: free-electron final states



Low energies: Final states by VLEED

- What is VLEED?

VLEED = measurement of R(E) elastic reflectivity in
the energy range below ~40 eV:

o weak V; = sensitivity to E(K)

- Why VLEED?
2
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One-step ARPES theory: 1™ =‘<CDLEED* A-p
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e direct connection to ARPES:
ARPES final state = time-inversed LEED state

o final-state energies in ARPES
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Final states by VLEED

Connection of VLEED to E(k)

e elastic case (inelastic scattering = 0)
R(E) = 1-T(E) by matching vacuum and crystal wavefunctions:

vacuum crystal
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VLEED spectrum T(E) > <« E(k)) along k=K ,+g



Final states by VLEED: Connection of VLEED to E(k)

vacuum crystal
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T(E) minima/maxima — <« band gaps/dispersions ranges in E(k,)
dT/dE extremes — <« critical points in E(k,)

<VLEED structures = critical points in E(kl)>




Final states by VLEED

Band mapping techniques
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E(k,): fitting experimental E(k,): direct band mapping
critical points along symmetry lines




Final states by VLEED

Effects of different bands

—

- normal-incidence
VLEED on Cu(110)
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e VLEED spectrum ~ conducting bands: large partial currents I, =T, |"v,
(effective coupling to vacuum + transport into crystal)

e | VLEED ~ ], PE: the same conducting bands effective in VLEED and ARPES



Final states by VLEED

Effect of inelastic scattering (V; = 0)

1% oV, [[Teg [ dr
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e damped Bloch waves with
complex k, = Rek, +ilmk,

e smooth E(k,) dispersions

«~Imk, Rek,—

critical points = extremes
in 1/curvature of E(k,)

o VLEED structures energles_—> crltlcill points in conducting bands E(k )
broadening — V,=#/t




Final states by VLEED

Experimental technique

- Experimental setup
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e retarding field to maintain focusing down to E ~0
e | =const = measurements of T(E) « - integral reflectivity R(E) in target current

gun
e data acquisition time <1 min/spectrum



Final states by VLEED: Experimental technique

- Retarding-field: Angle dependences

e o.- and E-dependent deviation of off-normal .
trajectories and variation of incidence angle 7N

e necessity to control K, :
- electrostatic ray-tracing
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3. Experimental properties of the final states

Non-free-electron effects

- E(k,) from normal-incidence VLEED on Cu(100)
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e deviations from FE-like model:

- non-parabolic dispersions (local m*, V)
- multiband composition (different k, available in the final state)



Experimental properties of the final states: Non-free-electron effects

- E(k,) from angle-dependent VLEED on Cu(110)
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e deviations from FE-like dispersions closer to the BZ borders



Experimental properties of the final states: Non-free-electron effects

- E(k) of layered material TiTe,

¢ //%%7/ . E(k,) = VLEED K, dispersion
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e anisotropic quasi- )
2-dim properties ~
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e prominent non-FE effects
e similar strength of non-FE effects in other layered materials (graphite, VSe,, TiTe,,
NbSe,...) due to sharp modulations of the crystal potential



Experimental properties of the final states: Non-free-electron effects

- E(k) of high-T, material Bi,Sr,CaCu,Oq

3D final-state dispersions e —

e highly structured final states =>
dramatic hv and K, dependences
in ARPES



Experimental properties of the final states

Self-energy effects

- AZ(E,K) in Cu by angle-dependent VLEED on (110) surface

:ﬁ DFT (P.Blaha)
«— Ky GW(F. Aryasetiawan) O
T Y T r K X

e Excited-state Z(E,k k') # static V,, = AX
¢ Band- and k-dependence of AX



Experimental properties of the final states

Lifetimes

- V,(E)=h/t in graphite (Barrett et al, 2005)
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e Typically sharp increase of V; at ho),



Final states by VLEED

VLEED vs other spectroscopies for unoccupied states

- VLEED vs XAS and IPES

e resolution in 3-dim k

e single electron state (XAS: core hole excitonic effects)
e direct connection with ARPES

e experimental simplicity

- VLEED vs SEE

¢ Recent study on Cu(110) (Bovet et al, 2004): SEE and VLEED equivalent
e Thermodynamic model of SEE (Feder & Pendry, 1978 ): l¢ce(E) o Ty, gep(E) + bkg



3-dim band mapping by VLEED+ARPES

- Connection between VLEED and ARPES

Y
General connection: | =‘<CDLEED A-ﬁCD'>
Detailed connection between
the partial absorbed currents 1P" o | 20s. 1Km 2
SRR VAV

and partial photocurrents:

e VVLEED coupling bands = PE dominant final bands

oy E(K) ) E(K) resolved in 3-dim Kk
Final-state lifetimes —> Valence-band {controlled Intrinsic accuracy




3-dim band mapping by VLEED+ARPES

Mapping in k, (photon energy variation): Quasi-2-dim TiTe,

- ARPES data

-d21/dE? intensity map (log scale)
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e non-parabolic and multiple Te 5p,/p,* dispersions



3-dim band mapping by VLEED+ARPES

Mapping in k, (photon energy variation): Quasi-2-dim TiTe,

- ARPES data

-021/dE2 intensity map (log scale)
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s fiﬁalistate enerby \direct transitions to FE final
bands with V,,=14.5 eV

o failure of the FE approximation to describe the experimental Te 5p,/p,* dispersions



3-dim band mapping by VLEED+ARPES: Quasi-2-dim TiTe,

- Final states

o final states by k-p + ELAPW calculations (E.E. Krasovskii)
with V;(E) fitted to the experiment + AX corrections
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e dramatic non-FE effects: non-parabolic
dispersions + multiband composition

e Ak =Imk, <<k, BZ—band structure regime



3-dim band mapping by VLEED+ARPES: Quasi-2-dim TiTe,

- ARPES data vs VLEED final states

-d2l/dE? intensity map (log scale)

mitial-sicte energy

10 12 14 16 18 20 22 24 26 28 30 3

final-state energy direct transitions to the
VLEED derived final bands

othe VLEED derived final states (including the non-FE and AX effects) reproduce the
experimental non-parabolic and multiple Te 5p,/p,* dispersions

eremnant disagreement due to intrinsic shifts from the direct transitions
e multiple final bands = common phenomenon of 'umklapp bands' or ‘secondary cone' emission



3-dim band mapping by VLEED+ARPES: : Quasi-2-dim TiTe,

- Band mapping
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e consistent E(k ) in contrast to the FE final states
e Te 5p,* does not cross E- — no FS electron pocket in I
e true final states incorporating the non-FE and AX effects are essential (VSe,, TiS, ...)



3-dim band mapping by VLEED+ARPES

Mapping in K, (emission angle variation)

- Results on Cu

- ldea

“1(hv)

K=K,

e Angle-dependent VLEED +
Constant-Final-State ARPES:

- 1DOS maxima = intensity gain
- many directions at one surface
- direct image of valence band E(k)
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X

-d?1/dE?

=

e k- and band-dependent AX in the valence band



3-dim band mapping by VLEED+ARPES

Self-energy effects in Cu

E-E (eV)

- VLEED experiment vs DFT and GW

e Significant band- and k-dependent AX
renormalization thru unoccupied and occupied
E(K) despite weakly correlated nature of Cu

e Agreement with GW gquasiparticle E(k)

(Strocov, Claessen, Aryasetiawan, Blaha & Nilsson, 2002)



3-dim band mapping by VLEED+ARPES: Self-energy effects in Cu

- Mechanism: Non-local exchange

E-E (eV)

e 4s weight: anomalous AX>0
3d weight: anomalous AX<0
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e Mechanism: Exchange integral -> J SENGEV(r—1 ) b (1) by(r drdr’
q

couples to the valence d-electrons =

more negative for d-states and less negative for s-states




High energies: Where do the final states become FE-like?

- Example: Normal-emission data on Al(100) (Hoffman et al 2002)

approx. final state energy (eV)
200 400 600

binding energy (eV)
oy s 9@ R

e non-FE multiband final states up to 400 eV



High energies: Soft-X-ray ARPES at Swiss Light Source

ADvanced RESonant Spectroscopies
(ADRESS) Beamline :

e energy range 400-1800 eV
e resolution 35 meV @ 1 keV
e 3x10! to 1x10% photons/s/0.01%BW

e RIXS endstation:

- high-res spectrometer (70 meV @ 1 keV)
by Politechnico di Milano

- rotating platform to study g-dependences

e ARPES endstation
- operation in spring 2008
- talk by L Patthey (Thursday, April 26)




Photoemission final states from the low-energy to high-energy limit:
Resolving electronic structure in 3-dim k-space

Cooperations:

P-O Nilsson and H Starnberg, Goteborg
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E Krasovskii, Kiel
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