Photoemission final states from the low-energy to high-energy limit: Resolving electronic structure in 3-dim k-space

V.N. Strocov, Swiss Light Source

- Problem of 3-dim wavevector k in ARPES:

Final-state k_{\perp} dispersions and lifetimes

- Low energies

Final states by VLEED

Properties of the final states (non-FE and self-energy effects)

3-dim band mapping by VLEED+ARPES

- High energies

Where do the final states become FE-like?

Problem of 3-dim k in ARPES

- Final-state dispersions

• resolving 3-dim **k** requires final-state $E(k_{\perp})$

• low energies: non-free-electron and excited-state self-energy effects in the final states

- Final-state damping

- Δk_{\perp} broadening = *intrinsic* k_{\perp} *resolition*
- spectral peaks \neq true quasiparticle $E(\mathbf{k})$: *intrinsic accuracy* of 3-dim band mapping

- Two sides "universal" curve

• ARPES regimes: $E(\mathbf{k}) (\Delta k_{\perp} << k_{\perp}^{BZ}) \rightarrow 1\text{-dim DOS } (\Delta k_{\perp} >> k_{\perp}^{BZ}) \rightarrow E(\mathbf{k})$ (*Feibelman & Eastman, 1974*)

- low energies: non-free-electron and self-energy effects in the final states by **Very-Low-Energy Electron Diffraction (VLEED)**
- high energies: free-electron final states

Low energies: Final states by VLEED

- What is VLEED?

VLEED = measurement of R(E) elastic reflectivity in the energy range below ~40 eV:

• weak $V_i \Rightarrow$ sensitivity to $E(\mathbf{k})$

- Why VLEED?

One-step ARPES theory: $I^{\rm ph} = \left| \left\langle \Phi^{\rm LEED*} \middle| \hat{A} \cdot \hat{p} \middle| \Phi^{\rm i} \right\rangle \right|^2$

- direct connection to ARPES: ARPES final state = time-inversed LEED state
- final-state energies in ARPES

Connection of VLEED to *E*(**k**)

• elastic case (inelastic scattering = 0)

R(E) = 1-T(E) by matching vacuum and crystal wavefunctions:

VLEED spectrum $T(E) \rightarrow \leftarrow E(k_{\perp})$ along $\mathbf{k}_{//} = \mathbf{K}_{//} + \mathbf{g}$

 $\begin{array}{rcl} T(E) \text{ minima/maxima} \rightarrow & \leftarrow \text{ band gaps/dispersions ranges in } E(k_{\perp}) \\ dT/dE \text{ extremes} \rightarrow & \leftarrow \text{ critical points in } E(k_{\perp}) \end{array}$

Band mapping techniques

 $E(k_{\perp})$: fitting experimental critical points

E(**k**_{//}): direct band mapping along symmetry lines

Effects of different bands

• VLEED spectrum ~ *conducting* bands: large *partial currents* $I_{\mathbf{k}} = |T_{\mathbf{k}}|^2 \upsilon_{\perp}$ (effective coupling to vacuum + transport into crystal)

• $I_k^{\text{VLEED}} \sim I_k^{\text{PE}}$: the same conducting bands effective in VLEED and ARPES

Final states by VLEED

Effect of inelastic scattering $(V_i \neq 0)$

• damped Bloch waves with complex $k_{\perp} = \text{Re}k_{\perp} + i\text{Im}k_{\perp}$

• smooth $E(k_{\perp})$ dispersions

critical points = extremes in 1/curvature of $E(k_{\perp})$

energies \rightarrow critical points in conducting bands $E(k_{\perp})$ broadening $\rightarrow V_i = \hbar/\tau$

Experimental technique

- Experimental setup

- retarding field to maintain focusing down to $E_{\rm p} \sim 0$
- I_{gun} =const \Rightarrow measurements of $T(E) \propto$ integral reflectivity R(E) in target current
- data acquisition time <1 min/spectrum

- Retarding-field: Angle dependences

• α - and *E*-dependent deviation of off-normal trajectories and variation of incidence angle

- necessity to control $\mathbf{K}_{//}$:
- electrostatic ray-tracing

$$\sum_{i} \frac{\partial^2 U}{\partial x_i^2} = 0 + \frac{\partial^2 x_i}{\partial t^2} = -\frac{e}{m} \frac{\partial U}{\partial x_i}, \quad x_i = x, y, z$$

- $K_{//}(\alpha, E) = \sum_{m,n=0}^{2} A_{mn} E^m \alpha^n$ fitted to

experimental points with well-defined $\mathbf{K}_{//}$

3. Experimental properties of the final states

Non-free-electron effects

- $E(k_{\perp})$ from normal-incidence VLEED on Cu(100)

- deviations from FE-like model:
- non-parabolic dispersions (local m^* , V_{000})
- *multiband* composition (different k_{\perp} available in the final state)

- *E*(k_{//}) from angle-dependent VLEED on Cu(110)

VLEED $\mathbf{K}_{//}$ dispersions: T(E) maxima (gray) = k_{\perp} dispersion ranges, T(E) minima (white) = band gaps = *surface-projected E*(\mathbf{k}) of the final states

• deviations from FE-like dispersions closer to the BZ borders

- E(k) of layered material TiTe₂

 $E(k_{//}) = VLEED K_{//} dispersion$

• prominent non-FE effects

• similar strength of non-FE effects in other layered materials (graphite, VSe_2 , $TiTe_2$, $NbSe_2...$) due to sharp modulations of the crystal potential

- $E(\mathbf{k})$ of high- T_c material $Bi_2Sr_2CaCu_2O_8$

•3D final-state dispersions

• highly structured final states => dramatic *hv* and **K**_{//} dependences in ARPES

Self-energy effects

- $\Delta\Sigma(E,k)$ in Cu by angle-dependent VLEED on (110) surface

- Excited-state $\Sigma(E, \mathbf{k}, \mathbf{k}') \neq \text{static } \mathbf{V}_{\text{xc}} \Longrightarrow \Delta \Sigma$
- Band- and **k**-dependence of $\Delta \Sigma$

Experimental properties of the final states

Lifetimes

- $V_i(E) = h/\tau$ in graphite (*Barrett et al*, 2005)

• $V_i(E)$ by fitting the sharpness and relative amplitude of dT/dE structures

• Typically sharp increase of $V_{\rm i}$ at $\hbar \omega_{\rm p}$

VLEED *vs* other spectroscopies for unoccupied states

- VLEED vs XAS and IPES

- resolution in 3-dim **k**
- single electron state (XAS: core hole excitonic effects)
- direct connection with ARPES
- experimental simplicity

- VLEED vs SEE

- Recent study on Cu(110) (Bovet et al, 2004): SEE and VLEED equivalent
- Thermodynamic model of SEE (*Feder & Pendry*, 1978): $I_{\text{SEE}}(E) \propto T_{\text{VLEED}}(E) + bkg$

3-dim band mapping by VLEED+ARPES

- Connection between VLEED and ARPES

General connection:
$$I^{\rm ph} = \left| \left\langle \Phi^{\rm LEED*} \left| \hat{A} \cdot \hat{p} \right| \Phi^{i} \right\rangle \right|^{2}$$

Detailed connection between the partial absorbed currents $I_{k}^{ph} \propto I_{k}^{abs} \cdot \left(\frac{1}{V_{i}} \frac{\partial k_{\perp}}{\partial E_{i}} |M_{fi}|^{2}\right)$ and partial photocurrents:

• VLEED coupling bands = PE dominant final bands

Mapping in k_{\perp} (photon energy variation): Quasi-2-dim TiTe₂

- ARPES data

• non-parabolic and multiple Te $5p_z/p_z^*$ dispersions

Mapping in k_{\perp} (photon energy variation): Quasi-2-dim TiTe₂

- ARPES data

 $-d^2I/dE^2$ intensity map (log scale)

• failure of the FE approximation to describe the experimental Te $5p_z/p_z^*$ dispersions

- Final states

• final states by $\mathbf{k} \cdot \mathbf{p}$ + ELAPW calculations (*E.E. Krasovskii*) with $V_i(E)$ fitted to the experiment + $\Delta\Sigma$ corrections

- dramatic non-FE effects: non-parabolic dispersions + multiband composition
- $\Delta k_{\perp} = \text{Im}k_{\perp} \ll k_{\perp}^{\text{BZ}}$ band structure regime

- ARPES data vs VLEED final states

 $-d^2I/dE^2$ intensity map (log scale)

•the VLEED derived final states (including the non-FE and ΔΣ effects) reproduce the experimental non-parabolic and multiple Te 5p_z/p_z* dispersions
•remnant disagreement due to intrinsic shifts from the direct transitions
• multiple final bands = common phenomenon of 'umklapp bands' or 'secondary cone' emission

- Band mapping

- consistent $E(k_{\perp})$ in contrast to the FE final states
- Te $5p_z^*$ does not cross $E_F \rightarrow$ no FS electron pocket in Γ
- true final states incorporating the non-FE and $\Delta\Sigma$ effects are essential (VSe₂, TiS₂...)

Mapping in K_{//} (emission angle variation)

- Results on Cu

- Idea

- Angle-dependent VLEED + Constant-Final-State ARPES:
- 1DOS maxima \Rightarrow intensity gain
- many directions at one surface
- direct image of valence band $E(\mathbf{k})$

• **k**- and band-dependent $\Delta\Sigma$ in the valence band

Self-energy effects in Cu

- VLEED experiment vs DFT and GW

Significant band- and k-dependent ΔΣ renormalization thru unoccupied and occupied *E*(k) despite weakly correlated nature of Cu
Agreement with *GW* quasiparticle *E*(k)

(Strocov, Claessen, Aryasetiawan, Blaha & Nilsson, 2002)

• 4*s* weight: anomalous $\Delta\Sigma > 0$ 3*d* weight: anomalous $\Delta\Sigma < 0$

• Mechanism: Exchange integral $-\sum_{q} \int \phi_{k}^{*}(\mathbf{r})\phi_{q}^{*}(\mathbf{r})v(\mathbf{r}-\mathbf{r}')\phi_{q}(\mathbf{r}')\phi_{k}(\mathbf{r}')d\mathbf{r}d\mathbf{r}'$ couples to the valence *d*-electrons \Longrightarrow more negative for *d*-states and less negative for *s*-states

High energies: Where do the final states become FE-like?

- Example: Normal-emission data on Al(100) (Hoffman et al 2002)

• non-FE multiband final states up to 400 eV

High energies: Soft-X-ray ARPES at Swiss Light Source

ADvanced RESonant Spectroscopies (ADRESS) Beamline :

- energy range 400-1800 eV
- resolution 35 meV @ 1 keV
- $3x10^{11}$ to $1x10^{13}$ photons/s/0.01% BW
- RIXS endstation:

high-res spectrometer (70 meV @ 1 keV)
by Politechnico di Milano

- rotating platform to study \mathbf{q} -dependences
- ARPES endstation
- operation in spring 2008
- talk by L Patthey (Thursday, April 26)

Cooperations:

P-O Nilsson and H Starnberg, Göteborg R Claessen, Würzburg P Blaha, Wien E Krasovskii, Kiel L Patthey, Swiss Light Source