

# Ionization dynamics and antiblockade of an ultracold Rydberg gas

#### C. S. Hofmann, G. Günter, H. Schempp, T. Amthor, and M. Weidemüller



RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG Quantendynamik atomarer und molekularer Systeme Ruprecht-Karls-Universität Heidelberg Physikalisches Institut







### Ultracold Rydberg Gases





### Typical experimental cycle



RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

 $\rho \sim 10^{10} \text{ cm}^{-3}$ 

#### Experimental Setup





## Excitation schemes I



• 2 photons & 3 levels

#### **Autler-Townes-Splitting**





Deiglmayr et al., Opt.Comm. 264, 293 (2006)

## **Excitation schemes II**



• 2 photons & 3 levels

STIRAP





Deiglmayr et al., Opt.Comm. 264, 293 (2006), see also Cubel et al, PRA 72, 023405 (2005)

## Excitation schemes III

2 photons & 3 levels  $\rho/\rho_{bl} = 0.1$  $\rho/\rho_{bl} = 1.0$  $\rho/\rho_{bl} = 2.3$  $\rho/\rho_{\rm bl} = 3.3$ 1.6 1.61.6 1.6 1.4 1.4 1.4 1.2 1.2 1.2 **STIRAP** 0.8 0.80.8 0.6 0.6 0.6 1.6 1.6 1.6 CPT 1.4 1.4 ٠ 1.4 1.2 1.2 1.2 0.8 0.8 0.8 0.6 0.6 0.6 detuning \delta [MHz] detuning & [MHz] detuning & [MHz] detuning \delta [MHz] nS/nD



Schempp et al. PRL 104, 173602 (2010), see also Pritchard et al., arXiv:1006.4087

ruprecht-karls-UNIVERSITÄT

HEIDELBERG

## Excitation schemes IV

NUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG



- STIRAP
- CPT
- 2 photons & 2 levels



#### **Coherent Rydberg excitation**



see also Johnson *et al.*, PRL **100**, 113003 (2008) and Miroshnychenko *et al.*, PRA **82**, 013405 (2010)

Reetz-Lamour et al., PRL.100, 253001 (2008), Reetz-Lamour et al.

Reetz-Lamour et al., NJP 10, 045026 (2008)

### Mechanical forces and Antiblockade

UNIVERSITÄT Heidelberg

RUPRECHT-KARLS-

## Real time observation of mechanical forces



#### Antiblockade of excitation



#### Amthor et al., PRL 98, 023004 (2007) & PRA 76, 054702 (2007)





Introduction to ultracold Rydberg physics

#### Rydberg ionization dynamics observed in real time

attractive van-der-Waals-potientials repulsive van-der-Waals-potientials

Antiblockade of an interacting Rydberg gas

#### Conclusion

### Autoionization and formation of a plasma

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG





Robinson *et al.*, PRL **85**, 4466 (2000 Pohl *et al.*, PRA **68**, 010703 (2003) Li *et al.*, PRL **94**, 173001 (2005) Killian *et al.*, Physics Reports **449**, 77 (2007)

## Autoionization and formation of a plasma

US

UNIVERSITÄT HEIDELBERG





~10µs



First experimental observation: Robinson et al., PRL 85, 4466 (2000)

### Rydberg interactions

- Large polarizability  $\propto n^7$
- Strong van der Waals coefficient  $\propto n^{11}$

attractive or repulsive van der Waals interactions



ionizing collisions (Penning ionization)

n ~ 60: collision time ~µs for distances ~ µm



UNIVERSITÄT

#### Interaction-induced ionization



ruprecht-karls-UNIVERSITÄT

HEIDELBERG

#### **IDEA:**

- Prepare a sample with specific distribution of pair distances

- Observe ionizing collisions in real time

Measurement of ionization dynamics gives information about effective potentials and pair distribution

Interaction potential calculations: Singer *et al.*, J. Phys. B 38, S295 (2005) http://quantendynamik.physik.uni-freiburg.de/potcalc

### Model excitation process





### Part 2: Calculation of collision times



extremely sensitive to tiny changes in pair distribution



ruprecht-karls-UNIVERSITÄT

HEIDELBERG

### Timing of the experiment



ruprecht-karls-UNIVERSITÄT

HEIDELBERG

#### Measurement of 60D<sub>5/2</sub> ionization

UNIVERSITÄT HEIDELBERG





Amthor et al., PRL 98, 023004 (2007)

#### Repulsive potentials – the 60S state







black body radiation-induced redistribution to other states
→ attractive dipole-dipole interaction

### Many-particle repulsive interaction (1D)



## **few** black-body-induced collisions on relevant timescales

**many** black-body-induced collisions on relevant timescales

short distances always recurring

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

### Ionization dynamics of repulsive states

NUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG





## Manipulation of the pair distribution

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG



62D (attractive)

82S (repulsive)



Amthor et al., PRL 98, 023004 (2007)

Amthor et al., PRA 76, 054702 (2007)





- Introduction to ultracold Rydberg physics
- Rydberg ionization dynamics observed in real time
  - attractive van-der-Waals-potientials repulsive van-der-Waals-potientials

Antiblockade of an interacting Rydberg gas



#### Antiblockade proposal



PRL 98, 023002 (2007)

#### PHYSICAL REVIEW LETTERS

week ending 12 JANUARY 2007

#### Antiblockade in Rydberg Excitation of an Ultracold Lattice Gas

C. Ates,<sup>1</sup> T. Pohl,<sup>2</sup> T. Pattard,<sup>1</sup> and J. M. Rost<sup>1</sup>

<sup>1</sup>Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, D-01187 Dresden, Germany <sup>2</sup>ITAMP, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, USA (Received 12 May 2006; published 8 January 2007)



#### Antiblockade effect



#### anti-blockade = enhanced Rydberg excitation



starting conditions:

→ 2-photon transition to produce AT splitting ( $\Omega_1 = 22 \text{ MHz}$ )

 $\rightarrow$  optical lattice (a = 5 µm)



next neighbors



distance

### Ways to reveal the antiblockade effect







- $\rightarrow$  n-dependent energy shift  $\Delta_R(n) \sim n^{11}$
- $\rightarrow$  resonance condition h $\Omega_1 = \Delta_R(n)$



ruprecht-karls-UNIVERSITÄT

HEIDELBERG

- $\rightarrow$  continuous pair distribution ~ R<sup>2</sup>
- $\rightarrow$  R-dependent energy shift  $\Delta_n(R) \sim R^{-6}$
- $\rightarrow$  resonance condition h $\Omega_1 = \Delta_n(R)$

Ates et al. PRL 98, 023002 (2007)

Amthor et al. PRL 104, 013001 (2010)

#### Two interacting three-level systems



RUPRECHT-KARLS-



#### Two interacting three-level systems



Autler-Townes-Splitting due to  $\Omega_1$ 

100

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Amthor et al. PRL 104, 013001 (2010)

#### Blockade and antiblockade

UNIVERSITÄT HEIDELBERG



Amthor et al. PRL 104, 013001 (2010)

#### Blockade and antiblockade



Amthor et al. PRL 104, 013001 (2010)

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

UNIVERSITÄT HEIDELBERG

Random gas: All pair distances available

Large Rabi splitting  $\rightarrow$  large interaction energies  $\rightarrow$  only **nearest neighbors** are taken into account

How to calculate the expected Penning ionization signal?

- Calculate excitation spectra for many pair distances
- Perform weighting with regard to nearest neighbor distribution
- Add up |rr> contribution of all spectra with a pair distance leading to a collision within a given time delay

### Penning ionization signals



#### Theoretical prediction

#### Experimental observation



as evidence for antiblockade

Amthor et al. PRL 104, 013001 (2010)

### Nearest neighbor distribution







total nearest neighbor distribution



Amthor et al. PRL 104, 013001 (2010)

### Distinctness of asymmetry





- distinctness of the asymmetry depends on availability of atom pairs for which  $h\Omega_1 = \Delta_n(r)$
- more pairs are available at larger r
  - $\rightarrow$  asymmetry more pronounced for smaller  $\Omega^{}_1$

#### Conclusion



#### Real time observation of Ionization dynamics





First experimental evidence of the antiblockade



 Manipulating the pair distribution by detuned Rydberg excitation

