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Rydberg spectrum of two electron atoms 
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From J. R. Rubbmark and S. A. Borgstrom, Physica Scripta 18, 196-208 (1978) 

1S0 states have 
no structure 



Rydberg spectrum of two electron atoms 
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From J. R. Rubbmark and S. A. Borgstrom, Physica Scripta 18, 196-208 (1978) 

Triplet states 
accessible via 
narrow line 



Singlet-triplet mixing 
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From J. R. Rubbmark and S. A. Borgstrom, Physica Scripta 18, 196-208 (1978) 

LS-coupling does not hold 

Strong mixing via perturbers 



Singlet-triplet mixing 
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• Two 5snd series observed 

• Exchange of amplitude at n=15 

P. Escherick, PRA 15, 1920 (1977) 



Analysis of the energies 
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Lu – Fano plot  

P. E
scherick, P

R
A 15, 1920 (1977) 
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Singlet-triplet mixing 

CRYP10 Week One  

1D2 character in each 
observed series from 
energies 

P. E
scherick, P

R
A 15, 1920 (1977) 

Measured gJ 

J. J. W
ynne et al., P

R
L 39, 1520 (1985) 



Consequences for cold Rydberg gases 
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To what extent does this modify e.g. interactions? 

Independent electron model: 

Core potential: 

(Klapisch) 



Independent electron model 
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3. Radial wavefunctions from Numerov method 

4.. Radial dipole matrix elements 

1. Series extrapolated using simulated annealing 

2.  Core potential fitted to measured quantum defects 



Stark maps 
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n=80 n=56 



Other observables 
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Lifetimes are dramatically modified 

Good agreement for e.g. Stark map 

Should be OK for interactions 



Valence states 
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From J. R. Rubbmark and S. A. Borgstrom, Physica Scripta 18, 196-208 (1978) 



MQDT and autoionization 
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Multi-channel quantum defect theory 
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Basic notions 

2-channel case 

Fitting our data 



Multi-channel quantum defect theory 
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Can describe bound and autoionizing spectra 

Can be semi-empirical, or ab inito 

Power is the ability to reduce complex spectra 
to very small number of parametrs 



The MQDT wavefunction 
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Follows Cooke and Cromer, PRA 32, 2725 
Also Gallagher’s book: 

Channels: 

radial wavefunction • angular 
• spin  
• core 



Boundary conditions 
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Bound states 



The R-matrix equation 
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Example: two channels 
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The isolated core excitation cross-section 
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5s2 1S0 

5s5p 1P0 

5s56d 1D2 

5p56d  Sr+ 5p3/2  



The isolated core excitation cross-section 
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Making a cold strontium Rydberg gas 

CRYP10 Week One 

5s2 1S0 

5s5p 1P0 

5s56d 1D2 

5p56d  

λ1 = 461nm	



λ2 = 413nm	



λ3 = 408nm	



Vary λ3 and   

Sr+ 5p3/2  

E 

Time 



Fitting our data 

Fit is 6-channel MQDT for 
5snd states 
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(Xu et al., PRA 35, 1138 (1987)) 



Six channels 
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5p1/2nd5/2 Consider states with J=3 5p3/2nd+ 5p3/2nd- 

5s 
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5p3/2 

1D2
 3D2
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Fitting our data 
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Parameter Gallagher Us 

µ1 2.79±0.02 

µ2 2.78±0.02 2.68 

µ2 2.81±0.02 2.89 

R12 0.40 

R13 0.05 

R14 0.45 

R25 0.61 

R36 0.46 

φ 0.69 1.24 



Increasing the Rydberg density 
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Increasing the delay 
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Narrow peak ≠ 5s56d  



2-channel fit to the F state 
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2-channel MQDT fit 

Cooke & Gallagher Opt. Lett. 6, 173 (1979) 

We obtain 



Combined fits 

CRYP10 Week One  

56D 6-channel 
MQDT 

54F 2-channel 
MQDT 

Measured lifetimes 



Ratio of cross-sections 
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Two –channel treatment: 

13±3% of the Rydberg atoms are transferred 



l-changing electron-Rydberg collisions 

CRYP10 Week One  

S. K. Dutta et al., PRL 86, 3993 (2001) 
A. Walz-Flannigan et al., 69, 063405 (2004) 

l-transfer associated with cold plasma formation  

~1000 ions required for plasma to form 



Future directions 
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Some ideas 
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Spatial resolution 

Optical traps for Rydberg atoms 

Rydberg quantum metrology 



A scanning microscope for Rydberg gases 
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A scanning microscope for Rydberg gases 
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Effect of blockade on spatial distribution 
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Optical traps for Rydberg atoms 



Two-electron Rydberg atoms 
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AC Stark shifts 
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5s2 1S0 

5s5p 1P0 

5s56d 1D2 

5p56d  Sr+ 5p3/2  

Also ponderomotive shift 
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AC Stark shifts 
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Nd:YAG 3rd harmonic=355 nm 



Autoionization rate 
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Assumes Γ=50GHz (n=56) 
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Quantum metrology 



Frequency metrology 
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3P 

698nm 
Γ =1 mHz clock transition 5s2  

5snl 

1P1 

318nm 



Quantum frequency metrology 
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independent 

entangled 
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Detecting strontium Rydberg states using 
electromagnetically induced transparency 

(EIT) 
S. Mauger et al. J. Phys B 40, F319 (2007) 
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Rydberg EIT 

Optical detection of Rydbergs using a strong ground-state transition. 

|1> 

|2> 

|3> 

probe 

Applied to Rydberg spectroscopy in Rb in Mohatpatra et. al. PRL 98, 113003 (2007)  

Strong coupling laser 
“dresses’ the system 

Transitions have equal 
amplitudes but opposite 
phases. 

ΩC 

coupling 
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Experimental setup 

Lasers are both 
commercial frequency 
doubled diode laser 
systems (Toptica) 
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Results 

Coupling laser is tuned close to the 5s18d 1D2 state 

Probe power: 150µW 
Coupling power: 12mW 

Probe linear 
Pump circular 

€ 

(γ
3

= 2π ×3.5MHz, Ω
c

= 2π ×7.5MHz,Δ
c

= 2π ×20MHz,Δv =16.5ms-1)
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Results 

5 MHz 

Resonance is much narrower than 32 MHz natural linewidth 
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Isotope shifts 

By changing the coupling laser 
detuning we can see EIT signals 
from the other isotopes. 

(with lock-in detection) 

5s18d 1D2 

5s19s 1S0 

Using known isotope shifts of the 
1P1 state we obtain the isotope 
shift of the Rydberg states 

Rydberg 
state 

88Sr - 86Sr 
(MHz) 

88Sr - 87Sr 
(MHz) 

5s18d 1D2 226 ± 7 - 

5s19s 1S0 213 ± 7 62 ± 8 
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Rydberg EIT in a cell 
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Scan calibration 

Scan calibrated using saturated absorption spectroscopy on the 1S0 to 1P1 line. 

Lorentzian lineshape with width equal to natural linewidth. 

Frequency intervals accurate to 3% 

Isotope Detuning 
(MHz) 

Abundance 
(%) 

84 -270.8 0.56 

86 -124.8 9.86 

87 

7/2 -9.7 4/15 * 7 

9/2 -68.9 1/3 * 7 

11/2 -51.9 2/5 * 7 

88 0 82.58 
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Frozen Rydberg gas 

Start with a cloud of cold atoms released from a MOT 

Ball of 107 atoms at ~100µK, separated by ~10µm 

Excite to a Rydberg state 

Interactions completely 
dominate kinetic energy 

Frozen Rydgerg gas, with 
many-body interactions 

Mourachko et al. PRL 80, 253 (1998) 


