

Strontium Rydberg gases (and ultra-cold plasmas)

Matt Jones Durham University

CRYP10 Week Two

- 1. Rydberg spectrum of two-electron atoms
- 2. Autoionization and MQDT
- 3. Future directions

 \wedge

From J. R. Rubbmark and S. A. Borgstrom, Physica Scripta 18, 196-208 (1978)

Singlet-triplet mixing

Singlet-triplet mixing

Analysis of the energies

Singlet-triplet mixing

J. J. Wynne et al., PRL **39**, 1520 (1985)

¹D₂ character in each observed series from energies

Measured g_J

To what extent does this modify e.g. interactions?

Independent electron model:

Core potential:

$$V = -\frac{1}{r} - \frac{(Z-1)e^{-ar}}{r} + be^{-cr} - 1$$
 (Klapisch)

- 1. Series extrapolated using simulated annealing
- 2. Core potential fitted to measured quantum defects
- 3. Radial wavefunctions from Numerov method
- 4.. Radial dipole matrix elements

Stark maps

Good agreement for e.g. Stark map

Should be OK for interactions

Lifetimes are dramatically modified

Valence states

MQDT and autoionization

Basic notions

2-channel case

Fitting our data

Can describe bound and autoionizing spectra

Can be semi-empirical, or ab inito

Power is the ability to reduce complex spectra to very small number of parametrs

Follows Cooke and Cromer, PRA **32**, 2725 Also Gallagher's book:

$$\Psi = \sum_{i} A_{i} \phi_{i}$$

Channels:

$$\phi_{i} = \begin{bmatrix} s (W_{i}, r) \cos (\pi \nu_{i}) + c (W_{i}, r) \sin (\pi \nu_{i}) \end{bmatrix} \chi_{i}$$
radial wavefunction
$$angular$$

$$\bullet spin$$

$$\bullet core$$

$$W_{i} = -\frac{1}{2\nu_{i}^{2}}$$

$$E_{i} = I_{i} + W_{i}$$

$$\bullet core$$

$$r \to \infty$$

Bound states $\Psi \to 0$

The R-matrix equation

$$\Psi = \sum_{i} A_i \phi_i$$

$$a_i = A_i \cos\left(\pi \nu_i'\right)$$

$$\nu_i' = \nu_i + \delta_i$$

$$\mathbf{R} + \tan\left(\pi\nu'\right)\mathbf{a} = 0$$

$$|\mathbf{R} + \tan\left(\pi\nu'\right)| = 0$$

Example: two channels

$$\begin{pmatrix} 0 & R_{12} \\ R_{12} & 0 \end{pmatrix} + \begin{pmatrix} \tan(\pi\nu_1') & 0 \\ 0 & \epsilon_c \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = 0$$

$$|\mathbf{R} + \tan(\pi\nu')| = 0 \qquad \epsilon_c = \sqrt{\frac{R_{12}^2}{\tan(\pi\nu'_1)}}$$

$$a_1^2 = R_{12}^2 \frac{1}{(\tan \pi \nu_1)^2 + R_{12}^4}$$

Example: two channels

The isolated core excitation cross-section

$$|\langle \Psi | \mu | b \rangle|^{2} = |\langle 5s | \mu | 5p \rangle|^{2} \,\delta_{l,l_{b}} A_{1}^{2} \,|\langle \nu_{b}, l_{b} | \nu_{1}, l \rangle|^{2}$$

The isolated core excitation cross-section

$$A_1^2 = R_{12}^2 \left[\frac{1 + \tan^2(\pi\nu_1')}{\tan^2(\pi\nu_1') + R_{12}^4} \right]$$

$$|\langle \nu_b, l_b | \nu_1, l \rangle|^2 = \left[\frac{2\nu_b^2 \nu_1^2}{\pi(\nu_1^2 - \nu_b^2)} \sin\left[\pi(\nu_1 - \nu_v)\right] \right]^2$$

CRYP10 Week One

 σ^2

Making a cold strontium Rydberg gas

Fit is 6-channel MQDT for 5snd states

(Xu et al., PRA **35**, 1138 (1987))

Consider states with J=3

$$|nd\rangle_{+} = |(\cos\phi)nd_{3/2} + (\sin\phi)nd_{5/2}\rangle$$
$$|nd\rangle_{-} = |(-\sin\phi)nd_{3/2} + (\cos\phi)nd_{5/2}\rangle$$

Fitting our data

Parameter	Gallagher	Us
μ ₁	2.79±0.02	
μ ₂	2.78±0.02	2.68
μ ₂	2.81±0.02	2.89
R ₁₂	0.40	
R ₁₃	0.05	
R ₁₄	0.45	
R ₂₅	0.61	
R ₃₆	0.46	
φ	0.69	1.24

Increasing the Rydberg density

Increasing the delay

12 $\Delta t = 60 \,\mu \mathrm{s}$ 10 S (V μ s mW⁻¹) 8 6 4 t 2 Ŧ ∙ 0└─ -40 -20 20 40 0 $\Delta_3 (GHz)$

Narrow peak ≠ 5s56d

2-channel fit to the F state

$$\nu_F^B = 0.0895$$

Cooke & Gallagher Opt. Lett. 6, 173 (1979)

We obtain

$$\nu_F = 0.37$$

 $R_F = 0.5$

$$A_1^2 = R_{12}^2 \left[\frac{1 + \tan^2(\pi\nu_1')}{\tan^2(\pi\nu_1') + R_{12}^4} \right]$$

Combined fits

$$\frac{N_F}{N_D} = \frac{\sigma_D}{\sigma_F} \left(\lambda_3\right) \frac{S_F}{S_D} \left(\lambda_3\right)$$

Two –channel treatment:

$$\frac{\sigma_D}{\sigma_F} = \frac{A_{1,D}(\nu_D, R_D)}{A_{1,F}(\nu_F, R_F)} \frac{O(\nu_D, \nu_D^B)}{O(\nu_F, \nu_F^B)}$$

13±3% of the Rydberg atoms are transferred

I-transfer associated with cold plasma formation

S. K. Dutta et al., PRL **86**, 3993 (2001)

A. Walz-Flannigan et al., 69, 063405 (2004)

~1000 ions required for plasma to form

Future directions

Spatial resolution

Optical traps for Rydberg atoms

Rydberg quantum metrology

A scanning microscope for Rydberg gases

A scanning microscope for Rydberg gases

Effect of blockade on spatial distribution

Also correlations?

Optical traps for Rydberg atoms

Two-electron Rydberg atoms

Nd:YAG 3rd harmonic=355 nm

Assumes Γ=50GHz (n=56)

Quantum metrology

Quantum frequency metrology

independent
$$\Psi = (|0\rangle + e^{i\theta}|1\rangle)^N$$

0

entangled
$$\Psi_E = (|0_N\rangle + e^{i\theta_E}|1_N\rangle) \quad \frac{\Delta f}{f} \propto \frac{1}{N}$$

Detecting strontium Rydberg states using electromagnetically induced transparency (EIT)

S. Mauger et al. J. Phys B 40, F319 (2007)

Optical detection of Rydbergs using a strong ground-state transition.

Strong coupling laser "dresses' the system

Transitions have equal amplitudes but opposite phases.

Applied to Rydberg spectroscopy in Rb in Mohatpatra et. al. PRL 98, 113003 (2007)

Experimental setup

Lasers are both commercial frequency doubled diode laser systems (Toptica)

Coupling laser is tuned close to the 5s18d ${}^{1}D_{2}$ state

Resonance is much narrower than 32 MHz natural linewidth

Isotope shifts

(with lock-in detection)

Durham University

By changing the coupling laser detuning we can see EIT signals from the other isotopes.

Using known isotope shifts of the ${}^{1}P_{1}$ state we obtain the isotope shift of the Rydberg states

Rydberg state	⁸⁸ Sr - ⁸⁶ Sr (MHz)	⁸⁸ Sr - ⁸⁷ Sr (MHz)
5s18d ¹ D ₂	226 ± 7	-
5s19s ¹ S ₀	213 ± 7	62 ± 8

Rydberg EIT in a cell

Scan calibrated using saturated absorption spectroscopy on the ${}^{1}S_{0}$ to ${}^{1}P_{1}$ line.

Lorentzian lineshape with width equal to natural linewidth.

Frequency intervals accurate to 3%

Start with a cloud of cold atoms released from a MOT

Ball of 10^7 atoms at ~100 $\mu K,$ separated by ~10 μm

Excite to a Rydberg state

Interactions completely dominate kinetic energy

Frozen Rydgerg gas, with many-body interactions

Mourachko et al. PRL 80, 253 (1998)

