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Impact approximation...
strong (but) binary interactions ....

states, correlating to 1S! 3S and 1S! 3P limits.

Elastic scattering phase shifts in all optically coupled mo-

lecular potentials are calculated and then transformed from

the rotating molecular frame, or body-fixed !BF" frame, to
the atomic-fixed frame, or space-fixed !SF" frame, where the
individual atomic total angular momenta j1 and j2 are good

quantum numbers. This transformation is in spirit similar to

the frame transformation ideas put forth by Fano #14$ and
Arthurs and Dalgarno #15$. The frame transformation tech-
niques for diatomic molecules and the angular momentum

dependence of cross sections have been studied by Singer

et al. #16$, Pack and Hirschfelder #17$, Reid and Rankin
#18$, Leo et al. #19$, and more recently by Krems and Dal-
garno #20$. Line shift and broadening parameters and elastic
and j-changing cross sections are calculated for different

fine-structure transitions and compared with measurements

#21$. In this approach, rotational coupling is implicitly in-
cluded; the Hamiltonian is solved in the uncoupled represen-

tation in the BF frame. The transformation to the SF frame

brings in the necessary coupling. For room temperature such

an approximation is sufficient.

II. THEORETICAL FRAMEWORK

A. Impact approximation

Although the radiating or absorbing atom is generally em-

bedded in a perturber bath and the collision process is a large

many-body problem, the quantum mechanical treatment of

the collision begins with a single binary collision between

the perturber and perturbed atom. The interaction between

perturbing atoms is ignored and each perturber interacts only

with one perturbed atom at a time. In the impact approxima-

tion #7,22$, the shift and broadening parameters are linearly
proportional to the perturber density and depend on the

perturber-radiator interaction only through the scattering

phase shift or matrix elements for binary collisions before

and after absorption or emission. These parameters can also

be related to the spectral profile of free-free transitions for

the perturber-radiator diatom, as illustrated in Fig. 1.

The spectral line profile for transitions from the initial

states ! j%m%& to the final states ! j'm'& in collision with a
perturber atom is
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where n is the perturber density, ! jm& and ! jm!& refer to the
atomic total angular momentum and their projections on the

SF axis of the radiating atom, ! ,m and !!,m! are the relative
perturbed-perturber orbital angular momentum quantum

numbers, and C
j%m%,1q

j'm' are the Clebsch-Gordan coefficients

(Cj1m1 j2m2

jm #0 j1m1 , j2m2! jm&) coupling the initial and final

states via a photon of polarization, 1̂q . The primes refer to
states immediately after the collision and all m values are

defined with respect to the SF frame. An average over the

relative perturber-radiator Maxwell-Boltzmann velocity dis-

tribution,
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at a temperature T, is taken #19,23$. If the Zeeman levels are
not resolved, the expression for the width and shift becomes
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where J#"!j is the total angular momentum of the system

in the SF frame and 2d f g
abc3 are the usual 6 j symbols. The

scattering matrix elements in the initial (%) and final (')
radiative states are denoted by S (J%) and S (J'), respectively,

and the reduced mass is , .
The shift and broadening expressions can be rewritten as
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where the average velocity is 0v&#!8kBT/+, and the pres-

sure of the perturber gas is p. The energy averaged cross

section is
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FIG. 1. !Color online" Schematic diagram of the scattering pro-

cesses involved in the interaction of radiating and perturber atoms.

The Vi and V f are interaction potentials as a function of nuclear

separation R for the initial and final states, respectively. Also shown

are the scattering solutions for Vi and V f at a collisional energy of

*2k2/2, , at large internuclear separations. The spectral line shift
and broadening are expressed in terms of these solutions.
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I. INTRODUCTION

Radiation damping of an excited atom leads to a broad-
ening of spectral lines. Such broadening or natural broaden-
ing is often modified in the presence of collisions with back-
ground atoms in a gas or in a plasma. There is also a shift of
spectral lines associated with collisions. The collisional
broadening and shift of lines are critical for precision spec-
troscopy and can be used as temperature diagnostics of elec-
tron or ion densities in a gas $1%.
Careful analysis of line profiles is a powerful technique

for studying atomic and molecular interactions and is often
necessary for probing matter in extreme conditions, such as
in stellar atmospheres, ultracold traps, liquid helium, and
Bose-Einstein condensates. Broadening of spectral lines of
implanted atoms in superfluid helium or clusters has been
used to probe cavity structure and bubble evolution in liquids
$2%. The radiative scattering process can also be employed to
investigate the nature of interatomic interactions $3,4%.
There is a considerable literature !e.g., $5,6%" on the study

of line broadening processes. The impact approximation,
originally due to Baranger $7%, has been widely and success-
fully used for treating the pressure broadening and shift of
lines. This approximation assumes that !a" the spectral lines
are well separated, !b" only binary collisions are important
for the broadening and shift of lines, and !c" the collision
time is much less than the time between collisions. The im-
pact approximation is particularly suited to the line core and
gives a Lorentzian profile for the line intensity,
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where , is the natural width of the spectral line and the
numerator is the square of the dipole amplitude for a free-
free transition between initial (!*+) and final (!)+) states of

the radiator-perturber system. The laser frequency & is tuned
with respect to the unperturbed transition frequency &0, and
the broadening width w !half width at half maximum" and
shift d are given as averages over all collisions of the corre-
sponding transition rates.
Far from the line core, in the wings of the transition pro-

file, the impact approximation fails. The quasistatic approxi-
mation $6%, based on the slow relative motion of the radiator-
perturber system, results in an intensity distribution that
depends on the difference of the interaction between the per-
turbing and radiating atoms in the ground and excited states.
For a purely van der Waals interaction (C6 /R

6) between the
radiator and perturber, the intensity varies as I(&)-.#3/2,
where ."&#&0 is the detuning. This behavior was first
observed by Kuhn $8% for the red wing of a mercury line at
253.7 nm, perturbed by argon.
The quasimolecular model of optical collisions deals with

line profiles within the framework of the adiabatic two-
channel approximation for the interaction of a perturber with
a radiating atom in its initial and excited states. Such a treat-
ment has been coined the unified Franck-Condon !UFC"
theory for the absorption profile $5% and has been extended to
the study of broadening where nonadiabatic effects, such as
the Coriolis coupling of /-# symmetries, occur $4%. Julienne
and Mies showed that the UFC approximation is obtained by
simply making the linewidth w in Eq. !1" dependent on the
detuning .; the impact approximation is obtained in the limit
.→0.
The present work deals with on-resonance Doppler-free

saturation laser spectroscopy of helium transitions
He( 3S1-

3P0,1,2) under the influence of collisions with
He(1 1S0) atoms $9%. The fine-structure splitting of the
He(2 3P j) levels in helium have been exploited in various
experiments $10–13% to measure the fine-structure constant
* and for quantitative tests of QED. Because the experimen-
tal number ratio of metastable to normal helium atoms is
very small $13%, only the pressure broadening and shift of
levels resulting from collisions between the ground
He(1 1S0) atoms with He(2

3S1) and He(2
3P j) metastable

atoms need to be considered. To this end, we calculate ab
initio molecular potentials for the ground and excited dimer

*Present address: National Institute of Standards and Technology,
Gaithersburg, MD 20899, USA.
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states, correlating to 1S! 3S and 1S! 3P limits.

Elastic scattering phase shifts in all optically coupled mo-

lecular potentials are calculated and then transformed from

the rotating molecular frame, or body-fixed !BF" frame, to
the atomic-fixed frame, or space-fixed !SF" frame, where the
individual atomic total angular momenta j1 and j2 are good

quantum numbers. This transformation is in spirit similar to

the frame transformation ideas put forth by Fano #14$ and
Arthurs and Dalgarno #15$. The frame transformation tech-
niques for diatomic molecules and the angular momentum

dependence of cross sections have been studied by Singer

et al. #16$, Pack and Hirschfelder #17$, Reid and Rankin
#18$, Leo et al. #19$, and more recently by Krems and Dal-
garno #20$. Line shift and broadening parameters and elastic
and j-changing cross sections are calculated for different

fine-structure transitions and compared with measurements

#21$. In this approach, rotational coupling is implicitly in-
cluded; the Hamiltonian is solved in the uncoupled represen-

tation in the BF frame. The transformation to the SF frame

brings in the necessary coupling. For room temperature such

an approximation is sufficient.

II. THEORETICAL FRAMEWORK

A. Impact approximation

Although the radiating or absorbing atom is generally em-

bedded in a perturber bath and the collision process is a large

many-body problem, the quantum mechanical treatment of

the collision begins with a single binary collision between

the perturber and perturbed atom. The interaction between

perturbing atoms is ignored and each perturber interacts only

with one perturbed atom at a time. In the impact approxima-

tion #7,22$, the shift and broadening parameters are linearly
proportional to the perturber density and depend on the

perturber-radiator interaction only through the scattering

phase shift or matrix elements for binary collisions before

and after absorption or emission. These parameters can also

be related to the spectral profile of free-free transitions for

the perturber-radiator diatom, as illustrated in Fig. 1.

The spectral line profile for transitions from the initial

states ! j%m%& to the final states ! j'm'& in collision with a
perturber atom is
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where n is the perturber density, ! jm& and ! jm!& refer to the
atomic total angular momentum and their projections on the

SF axis of the radiating atom, ! ,m and !!,m! are the relative
perturbed-perturber orbital angular momentum quantum

numbers, and C
j%m%,1q

j'm' are the Clebsch-Gordan coefficients

(Cj1m1 j2m2

jm #0 j1m1 , j2m2! jm&) coupling the initial and final

states via a photon of polarization, 1̂q . The primes refer to
states immediately after the collision and all m values are

defined with respect to the SF frame. An average over the

relative perturber-radiator Maxwell-Boltzmann velocity dis-

tribution,

f !v "#4+v2# ,

2+kBT
$ 3/2exp# "
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at a temperature T, is taken #19,23$. If the Zeeman levels are
not resolved, the expression for the width and shift becomes
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where J#"!j is the total angular momentum of the system

in the SF frame and 2d f g
abc3 are the usual 6 j symbols. The

scattering matrix elements in the initial (%) and final (')
radiative states are denoted by S (J%) and S (J'), respectively,

and the reduced mass is , .
The shift and broadening expressions can be rewritten as
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where the average velocity is 0v&#!8kBT/+, and the pres-

sure of the perturber gas is p. The energy averaged cross

section is
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FIG. 1. !Color online" Schematic diagram of the scattering pro-

cesses involved in the interaction of radiating and perturber atoms.

The Vi and V f are interaction potentials as a function of nuclear

separation R for the initial and final states, respectively. Also shown

are the scattering solutions for Vi and V f at a collisional energy of

*2k2/2, , at large internuclear separations. The spectral line shift
and broadening are expressed in terms of these solutions.
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states, correlating to 1S! 3S and 1S! 3P limits.

Elastic scattering phase shifts in all optically coupled mo-

lecular potentials are calculated and then transformed from

the rotating molecular frame, or body-fixed !BF" frame, to
the atomic-fixed frame, or space-fixed !SF" frame, where the
individual atomic total angular momenta j1 and j2 are good

quantum numbers. This transformation is in spirit similar to

the frame transformation ideas put forth by Fano #14$ and
Arthurs and Dalgarno #15$. The frame transformation tech-
niques for diatomic molecules and the angular momentum

dependence of cross sections have been studied by Singer

et al. #16$, Pack and Hirschfelder #17$, Reid and Rankin
#18$, Leo et al. #19$, and more recently by Krems and Dal-
garno #20$. Line shift and broadening parameters and elastic
and j-changing cross sections are calculated for different

fine-structure transitions and compared with measurements

#21$. In this approach, rotational coupling is implicitly in-
cluded; the Hamiltonian is solved in the uncoupled represen-

tation in the BF frame. The transformation to the SF frame

brings in the necessary coupling. For room temperature such

an approximation is sufficient.

II. THEORETICAL FRAMEWORK

A. Impact approximation

Although the radiating or absorbing atom is generally em-

bedded in a perturber bath and the collision process is a large

many-body problem, the quantum mechanical treatment of

the collision begins with a single binary collision between

the perturber and perturbed atom. The interaction between

perturbing atoms is ignored and each perturber interacts only

with one perturbed atom at a time. In the impact approxima-

tion #7,22$, the shift and broadening parameters are linearly
proportional to the perturber density and depend on the

perturber-radiator interaction only through the scattering

phase shift or matrix elements for binary collisions before

and after absorption or emission. These parameters can also

be related to the spectral profile of free-free transitions for

the perturber-radiator diatom, as illustrated in Fig. 1.

The spectral line profile for transitions from the initial

states ! j%m%& to the final states ! j'm'& in collision with a
perturber atom is
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where n is the perturber density, ! jm& and ! jm!& refer to the
atomic total angular momentum and their projections on the

SF axis of the radiating atom, ! ,m and !!,m! are the relative
perturbed-perturber orbital angular momentum quantum

numbers, and C
j%m%,1q

j'm' are the Clebsch-Gordan coefficients

(Cj1m1 j2m2

jm #0 j1m1 , j2m2! jm&) coupling the initial and final

states via a photon of polarization, 1̂q . The primes refer to
states immediately after the collision and all m values are

defined with respect to the SF frame. An average over the

relative perturber-radiator Maxwell-Boltzmann velocity dis-

tribution,

f !v "#4+v2# ,

2+kBT
$ 3/2exp# "
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at a temperature T, is taken #19,23$. If the Zeeman levels are
not resolved, the expression for the width and shift becomes
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where J#"!j is the total angular momentum of the system

in the SF frame and 2d f g
abc3 are the usual 6 j symbols. The

scattering matrix elements in the initial (%) and final (')
radiative states are denoted by S (J%) and S (J'), respectively,

and the reduced mass is , .
The shift and broadening expressions can be rewritten as
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where the average velocity is 0v&#!8kBT/+, and the pres-

sure of the perturber gas is p. The energy averaged cross
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FIG. 1. !Color online" Schematic diagram of the scattering pro-

cesses involved in the interaction of radiating and perturber atoms.

The Vi and V f are interaction potentials as a function of nuclear

separation R for the initial and final states, respectively. Also shown

are the scattering solutions for Vi and V f at a collisional energy of

*2k2/2, , at large internuclear separations. The spectral line shift
and broadening are expressed in terms of these solutions.
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I. INTRODUCTION

Radiation damping of an excited atom leads to a broad-
ening of spectral lines. Such broadening or natural broaden-
ing is often modified in the presence of collisions with back-
ground atoms in a gas or in a plasma. There is also a shift of
spectral lines associated with collisions. The collisional
broadening and shift of lines are critical for precision spec-
troscopy and can be used as temperature diagnostics of elec-
tron or ion densities in a gas $1%.
Careful analysis of line profiles is a powerful technique

for studying atomic and molecular interactions and is often
necessary for probing matter in extreme conditions, such as
in stellar atmospheres, ultracold traps, liquid helium, and
Bose-Einstein condensates. Broadening of spectral lines of
implanted atoms in superfluid helium or clusters has been
used to probe cavity structure and bubble evolution in liquids
$2%. The radiative scattering process can also be employed to
investigate the nature of interatomic interactions $3,4%.
There is a considerable literature !e.g., $5,6%" on the study

of line broadening processes. The impact approximation,
originally due to Baranger $7%, has been widely and success-
fully used for treating the pressure broadening and shift of
lines. This approximation assumes that !a" the spectral lines
are well separated, !b" only binary collisions are important
for the broadening and shift of lines, and !c" the collision
time is much less than the time between collisions. The im-
pact approximation is particularly suited to the line core and
gives a Lorentzian profile for the line intensity,
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where , is the natural width of the spectral line and the
numerator is the square of the dipole amplitude for a free-
free transition between initial (!*+) and final (!)+) states of

the radiator-perturber system. The laser frequency & is tuned
with respect to the unperturbed transition frequency &0, and
the broadening width w !half width at half maximum" and
shift d are given as averages over all collisions of the corre-
sponding transition rates.
Far from the line core, in the wings of the transition pro-

file, the impact approximation fails. The quasistatic approxi-
mation $6%, based on the slow relative motion of the radiator-
perturber system, results in an intensity distribution that
depends on the difference of the interaction between the per-
turbing and radiating atoms in the ground and excited states.
For a purely van der Waals interaction (C6 /R

6) between the
radiator and perturber, the intensity varies as I(&)-.#3/2,
where ."&#&0 is the detuning. This behavior was first
observed by Kuhn $8% for the red wing of a mercury line at
253.7 nm, perturbed by argon.
The quasimolecular model of optical collisions deals with

line profiles within the framework of the adiabatic two-
channel approximation for the interaction of a perturber with
a radiating atom in its initial and excited states. Such a treat-
ment has been coined the unified Franck-Condon !UFC"
theory for the absorption profile $5% and has been extended to
the study of broadening where nonadiabatic effects, such as
the Coriolis coupling of /-# symmetries, occur $4%. Julienne
and Mies showed that the UFC approximation is obtained by
simply making the linewidth w in Eq. !1" dependent on the
detuning .; the impact approximation is obtained in the limit
.→0.
The present work deals with on-resonance Doppler-free

saturation laser spectroscopy of helium transitions
He( 3S1-

3P0,1,2) under the influence of collisions with
He(1 1S0) atoms $9%. The fine-structure splitting of the
He(2 3P j) levels in helium have been exploited in various
experiments $10–13% to measure the fine-structure constant
* and for quantitative tests of QED. Because the experimen-
tal number ratio of metastable to normal helium atoms is
very small $13%, only the pressure broadening and shift of
levels resulting from collisions between the ground
He(1 1S0) atoms with He(2

3S1) and He(2
3P j) metastable

atoms need to be considered. To this end, we calculate ab
initio molecular potentials for the ground and excited dimer

*Present address: National Institute of Standards and Technology,
Gaithersburg, MD 20899, USA.
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states, correlating to 1S! 3S and 1S! 3P limits.

Elastic scattering phase shifts in all optically coupled mo-

lecular potentials are calculated and then transformed from

the rotating molecular frame, or body-fixed !BF" frame, to
the atomic-fixed frame, or space-fixed !SF" frame, where the
individual atomic total angular momenta j1 and j2 are good

quantum numbers. This transformation is in spirit similar to

the frame transformation ideas put forth by Fano #14$ and
Arthurs and Dalgarno #15$. The frame transformation tech-
niques for diatomic molecules and the angular momentum

dependence of cross sections have been studied by Singer

et al. #16$, Pack and Hirschfelder #17$, Reid and Rankin
#18$, Leo et al. #19$, and more recently by Krems and Dal-
garno #20$. Line shift and broadening parameters and elastic
and j-changing cross sections are calculated for different

fine-structure transitions and compared with measurements

#21$. In this approach, rotational coupling is implicitly in-
cluded; the Hamiltonian is solved in the uncoupled represen-

tation in the BF frame. The transformation to the SF frame

brings in the necessary coupling. For room temperature such

an approximation is sufficient.

II. THEORETICAL FRAMEWORK

A. Impact approximation

Although the radiating or absorbing atom is generally em-

bedded in a perturber bath and the collision process is a large

many-body problem, the quantum mechanical treatment of

the collision begins with a single binary collision between

the perturber and perturbed atom. The interaction between

perturbing atoms is ignored and each perturber interacts only

with one perturbed atom at a time. In the impact approxima-

tion #7,22$, the shift and broadening parameters are linearly
proportional to the perturber density and depend on the

perturber-radiator interaction only through the scattering

phase shift or matrix elements for binary collisions before

and after absorption or emission. These parameters can also

be related to the spectral profile of free-free transitions for

the perturber-radiator diatom, as illustrated in Fig. 1.

The spectral line profile for transitions from the initial

states ! j%m%& to the final states ! j'm'& in collision with a
perturber atom is
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where n is the perturber density, ! jm& and ! jm!& refer to the
atomic total angular momentum and their projections on the

SF axis of the radiating atom, ! ,m and !!,m! are the relative
perturbed-perturber orbital angular momentum quantum

numbers, and C
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j'm' are the Clebsch-Gordan coefficients
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at a temperature T, is taken #19,23$. If the Zeeman levels are
not resolved, the expression for the width and shift becomes
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where J#"!j is the total angular momentum of the system

in the SF frame and 2d f g
abc3 are the usual 6 j symbols. The

scattering matrix elements in the initial (%) and final (')
radiative states are denoted by S (J%) and S (J'), respectively,

and the reduced mass is , .
The shift and broadening expressions can be rewritten as
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FIG. 1. !Color online" Schematic diagram of the scattering pro-

cesses involved in the interaction of radiating and perturber atoms.

The Vi and V f are interaction potentials as a function of nuclear

separation R for the initial and final states, respectively. Also shown

are the scattering solutions for Vi and V f at a collisional energy of

*2k2/2, , at large internuclear separations. The spectral line shift
and broadening are expressed in terms of these solutions.
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dependence of cross sections have been studied by Singer

et al. #16$, Pack and Hirschfelder #17$, Reid and Rankin
#18$, Leo et al. #19$, and more recently by Krems and Dal-
garno #20$. Line shift and broadening parameters and elastic
and j-changing cross sections are calculated for different

fine-structure transitions and compared with measurements

#21$. In this approach, rotational coupling is implicitly in-
cluded; the Hamiltonian is solved in the uncoupled represen-

tation in the BF frame. The transformation to the SF frame

brings in the necessary coupling. For room temperature such

an approximation is sufficient.

II. THEORETICAL FRAMEWORK
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Although the radiating or absorbing atom is generally em-

bedded in a perturber bath and the collision process is a large

many-body problem, the quantum mechanical treatment of

the collision begins with a single binary collision between
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perturbing atoms is ignored and each perturber interacts only

with one perturbed atom at a time. In the impact approxima-
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proportional to the perturber density and depend on the

perturber-radiator interaction only through the scattering

phase shift or matrix elements for binary collisions before

and after absorption or emission. These parameters can also

be related to the spectral profile of free-free transitions for

the perturber-radiator diatom, as illustrated in Fig. 1.
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FIG. 1. !Color online" Schematic diagram of the scattering pro-

cesses involved in the interaction of radiating and perturber atoms.

The Vi and V f are interaction potentials as a function of nuclear

separation R for the initial and final states, respectively. Also shown

are the scattering solutions for Vi and V f at a collisional energy of

*2k2/2, , at large internuclear separations. The spectral line shift
and broadening are expressed in terms of these solutions.
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The collisional broadening and shift of metastable helium fine-structure lines are calculated within the

impact approximation. Ab initio Born-Oppenheimer potential energy curves correlating to He(1 1S0) and

He(2 3P j) atomic levels are obtained using the configuration interaction valence bond method and combined

with semiempirically calculated van der Waals interaction terms between these atoms to also study j-specific

and j-changing collisions. A long-range van der Waals potential well exists in the 3#u potential correlated to

the He(1 1S0)!He(2
3P j) limit, whose influence on the scattering phase shift is assessed. At T"310 K, the

broadening and shift parameters are practically j independent and have average values of 12.60 and 1.87

MHz/Torr, respectively. The j-changing collisions have cross sections roughly five times smaller than the

j-specific cross sections.
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I. INTRODUCTION

Radiation damping of an excited atom leads to a broad-
ening of spectral lines. Such broadening or natural broaden-
ing is often modified in the presence of collisions with back-
ground atoms in a gas or in a plasma. There is also a shift of
spectral lines associated with collisions. The collisional
broadening and shift of lines are critical for precision spec-
troscopy and can be used as temperature diagnostics of elec-
tron or ion densities in a gas $1%.
Careful analysis of line profiles is a powerful technique

for studying atomic and molecular interactions and is often
necessary for probing matter in extreme conditions, such as
in stellar atmospheres, ultracold traps, liquid helium, and
Bose-Einstein condensates. Broadening of spectral lines of
implanted atoms in superfluid helium or clusters has been
used to probe cavity structure and bubble evolution in liquids
$2%. The radiative scattering process can also be employed to
investigate the nature of interatomic interactions $3,4%.
There is a considerable literature !e.g., $5,6%" on the study

of line broadening processes. The impact approximation,
originally due to Baranger $7%, has been widely and success-
fully used for treating the pressure broadening and shift of
lines. This approximation assumes that !a" the spectral lines
are well separated, !b" only binary collisions are important
for the broadening and shift of lines, and !c" the collision
time is much less than the time between collisions. The im-
pact approximation is particularly suited to the line core and
gives a Lorentzian profile for the line intensity,

I!&"'
!()!er!*+!2

!&#&0#d "2!!,/2!w "2
, !1"

where , is the natural width of the spectral line and the
numerator is the square of the dipole amplitude for a free-
free transition between initial (!*+) and final (!)+) states of

the radiator-perturber system. The laser frequency & is tuned
with respect to the unperturbed transition frequency &0, and
the broadening width w !half width at half maximum" and
shift d are given as averages over all collisions of the corre-
sponding transition rates.
Far from the line core, in the wings of the transition pro-

file, the impact approximation fails. The quasistatic approxi-
mation $6%, based on the slow relative motion of the radiator-
perturber system, results in an intensity distribution that
depends on the difference of the interaction between the per-
turbing and radiating atoms in the ground and excited states.
For a purely van der Waals interaction (C6 /R

6) between the
radiator and perturber, the intensity varies as I(&)-.#3/2,
where ."&#&0 is the detuning. This behavior was first
observed by Kuhn $8% for the red wing of a mercury line at
253.7 nm, perturbed by argon.
The quasimolecular model of optical collisions deals with

line profiles within the framework of the adiabatic two-
channel approximation for the interaction of a perturber with
a radiating atom in its initial and excited states. Such a treat-
ment has been coined the unified Franck-Condon !UFC"
theory for the absorption profile $5% and has been extended to
the study of broadening where nonadiabatic effects, such as
the Coriolis coupling of /-# symmetries, occur $4%. Julienne
and Mies showed that the UFC approximation is obtained by
simply making the linewidth w in Eq. !1" dependent on the
detuning .; the impact approximation is obtained in the limit
.→0.
The present work deals with on-resonance Doppler-free

saturation laser spectroscopy of helium transitions
He( 3S1-

3P0,1,2) under the influence of collisions with
He(1 1S0) atoms $9%. The fine-structure splitting of the
He(2 3P j) levels in helium have been exploited in various
experiments $10–13% to measure the fine-structure constant
* and for quantitative tests of QED. Because the experimen-
tal number ratio of metastable to normal helium atoms is
very small $13%, only the pressure broadening and shift of
levels resulting from collisions between the ground
He(1 1S0) atoms with He(2

3S1) and He(2
3P j) metastable

atoms need to be considered. To this end, we calculate ab
initio molecular potentials for the ground and excited dimer

*Present address: National Institute of Standards and Technology,
Gaithersburg, MD 20899, USA.
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states, correlating to 1S! 3S and 1S! 3P limits.

Elastic scattering phase shifts in all optically coupled mo-

lecular potentials are calculated and then transformed from

the rotating molecular frame, or body-fixed !BF" frame, to
the atomic-fixed frame, or space-fixed !SF" frame, where the
individual atomic total angular momenta j1 and j2 are good

quantum numbers. This transformation is in spirit similar to

the frame transformation ideas put forth by Fano #14$ and
Arthurs and Dalgarno #15$. The frame transformation tech-
niques for diatomic molecules and the angular momentum

dependence of cross sections have been studied by Singer

et al. #16$, Pack and Hirschfelder #17$, Reid and Rankin
#18$, Leo et al. #19$, and more recently by Krems and Dal-
garno #20$. Line shift and broadening parameters and elastic
and j-changing cross sections are calculated for different

fine-structure transitions and compared with measurements

#21$. In this approach, rotational coupling is implicitly in-
cluded; the Hamiltonian is solved in the uncoupled represen-

tation in the BF frame. The transformation to the SF frame

brings in the necessary coupling. For room temperature such

an approximation is sufficient.

II. THEORETICAL FRAMEWORK

A. Impact approximation

Although the radiating or absorbing atom is generally em-

bedded in a perturber bath and the collision process is a large

many-body problem, the quantum mechanical treatment of

the collision begins with a single binary collision between

the perturber and perturbed atom. The interaction between

perturbing atoms is ignored and each perturber interacts only

with one perturbed atom at a time. In the impact approxima-

tion #7,22$, the shift and broadening parameters are linearly
proportional to the perturber density and depend on the

perturber-radiator interaction only through the scattering

phase shift or matrix elements for binary collisions before

and after absorption or emission. These parameters can also

be related to the spectral profile of free-free transitions for

the perturber-radiator diatom, as illustrated in Fig. 1.

The spectral line profile for transitions from the initial

states ! j%m%& to the final states ! j'm'& in collision with a
perturber atom is
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where n is the perturber density, ! jm& and ! jm!& refer to the
atomic total angular momentum and their projections on the

SF axis of the radiating atom, ! ,m and !!,m! are the relative
perturbed-perturber orbital angular momentum quantum

numbers, and C
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j'm' are the Clebsch-Gordan coefficients

(Cj1m1 j2m2

jm #0 j1m1 , j2m2! jm&) coupling the initial and final

states via a photon of polarization, 1̂q . The primes refer to
states immediately after the collision and all m values are

defined with respect to the SF frame. An average over the

relative perturber-radiator Maxwell-Boltzmann velocity dis-

tribution,
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at a temperature T, is taken #19,23$. If the Zeeman levels are
not resolved, the expression for the width and shift becomes
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abc3 are the usual 6 j symbols. The

scattering matrix elements in the initial (%) and final (')
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The shift and broadening expressions can be rewritten as
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FIG. 1. !Color online" Schematic diagram of the scattering pro-

cesses involved in the interaction of radiating and perturber atoms.

The Vi and V f are interaction potentials as a function of nuclear

separation R for the initial and final states, respectively. Also shown

are the scattering solutions for Vi and V f at a collisional energy of

*2k2/2, , at large internuclear separations. The spectral line shift
and broadening are expressed in terms of these solutions.
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Broadening and shift of Rydberg levels 4487 

For elastic Rydberg-atom-perturber collisions the broadening and shift cross sec- 

tions can be written as 

~ ‘ = 2 . i r  (1 -COS q ( p ) ) p  dp I,p 
U”= -27r lom sin q( p ) p  dp 

where p is the impact parameter and q is the semiclassical phaseshift due to the total 

interaction V between the Rydberg atom and perturber. Here q is given by the formula 

where R is the internuclear distance. A straight-line trajectory in equation (4) is 

assumed. 

3. Interaction of a Rydberg atom with a neutral atomic particle 

The potential of the interaction between the Rydberg atom and the neutral atomic 

particle consists of the polarisation attractions and the short-range interaction between 
the Rydberg electron and perturber. The polarisation interaction V,,, = -&E2,  where 

a is the polarisability of the perturber and 

is the electric field originated by the core of the Rydberg atom and the Rydberg electron. 

Here R and r are the location of the perturber and the coordinate of the electron, 

respectively, ro is the distance of the short-range interaction between the electron and 

perturber. Thus 

a R * - - ( R . ~ )  a V,,,(R, r )  = --+a -- IR - rl> ro. ( 5 )  
2R4 R31R - rI3 21R - rI4 

V,( R )  = - a / 2 R 4  is the polarisation attraction between the perturber and the core of 

the Rydberg atom, 

R 2 - ( R .  r )  

R 3 / R  - rI3 
v,, = a 

is the interaction between the Rydberg electron and dipole momentum of the perturber 
induced by the core of the Rydberg atom. The calculation of the matrix element of 
the operator V,, becomes simpler if the expansion of this operator in terms of the 
Legendre functions P, is used. Then equation ( 6 )  is simply 

Ve−A(R, r) = V0δ(r−R)− αA

2|r−R|4

Baranger ... (1958)

Wednesday, September 15, 2010



Wednesday, September 15, 2010



Fermi pseudopotential

Contact interaction (Nuovo Cimento 11, 157(1934) - 
pressure broadening and shift

Fermi observed that how Rydberg lines shifted depended on the 
species.... species-dependent scattering length
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Fermi pseudopotential

Contact interaction (Nuovo Cimento 11, 157(1934) - 
pressure broadening and shift

Fermi observed that how Rydberg lines shifted depended on the 
species.... species-dependent scattering length

zero-range e- scattering leads to long-range 
molecular binding
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--- all positive;  aT (Rb) = 0.2 a0
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Bartschat + Sadeghpour (2003)

e- - Alkaline-earth (1Se) elastic phase shift

R-matrix calculations 

Letter to the Editor L11

(a)

(b)

(c)

(d)

Figure 1. S-wave (! = 0), p-wave (! = 1), and d-wave (! = 2) phaseshifts, partial and summed
angle-integrated cross sections, and results for k cot δ0 for low-energy electron collisions with
magnesium. If not indicated otherwise, (a)–(c) contain the results from the 9st close-coupling
model. Some of the small cross sections have been multiplied by the factors listed. In (d), the
numerical results are shown by the symbols, while the fit to a quadratic function of the momentumk
is shown by the curves.

Letter to the Editor L13

(a)

(b)

(c)

(d)

Figure 2. Same as figure 1 for electron collisions with calcium. The results shown in (a) and (b)
were obtained in a 5st calculation with the target description given by Glass [38]. The curves
labelled 5st-p and 5st-n correspond to 5st calculations usingCIV3 orbitals with (p) and without (n)
pseudo-orbitals. The symbols in (a) and (c) represent the results of Yuan and Zhang [36]. In (d)
the symbols are the numerical results from the model indicated while the curves are the fit to a
quadratic function of k.

L14 Letter to the Editor

(a)

(b)

(c)

(d)

Figure 3. Same as figure 1 for electron collisions with strontium. The results shown in (a) and
(b) were obtained in a 5st calculation with the target description obtained with the CIV3 orbitals.
The curves labelled 5st-SS correspond to a 5st calculation using SUPERSTRUCTURE orbitals. The
symbols in (a) and (c) represent the results of Yuan and Zhang [36]. In (d), the symbols are the
numerical results from the model indicated while the curves are the fit to a quadratic function of k.

low energies, the numerical calculations are by no means trivial and hence we regard these
numbers as preliminary. It is, however, very likely that the values of the scattering length in
all three systems are negative, with increasing magnitudes when going from Mg to Sr. The

telluride.tex [11] (16:36) – 7/6/2005

Telluride05

Scattering length
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R(a.u.)

-20
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a T[k
(R

)]

Energy dependence of e- scattering length

aT[k] = -tanδ0
T(k)/k

aT[0] (Rb) = -16.0 a.u. (Bahrim & Thumm 2000)

aT[0] (Na) = -11.0 a.u. (Burke, unpublished)

a[0] (Mg) = -2.5 a0 (Bartschat & Sadeghpour 2003)
a[0] (Ca) = -12 a0
a[0] (Sr) = -18 a0

! Alkali metals in 3Se:
scattering length =⇒ all
negative; form molecu-
lar Rydberg levels

! Alkali metals in 1Se:
scattering length =⇒
all positive; aT (Rb) =
0.2a0.

! Alkaline earth atoms in
2S: certainly large and
negative, as there are
no known s-wave bound
states

! Ca− forms in
2P 0(4s24p)

Notes:
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magnesium. If not indicated otherwise, (a)–(c) contain the results from the 9st close-coupling
model. Some of the small cross sections have been multiplied by the factors listed. In (d), the
numerical results are shown by the symbols, while the fit to a quadratic function of the momentumk
is shown by the curves.
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Figure 2. Same as figure 1 for electron collisions with calcium. The results shown in (a) and (b)
were obtained in a 5st calculation with the target description given by Glass [38]. The curves
labelled 5st-p and 5st-n correspond to 5st calculations usingCIV3 orbitals with (p) and without (n)
pseudo-orbitals. The symbols in (a) and (c) represent the results of Yuan and Zhang [36]. In (d)
the symbols are the numerical results from the model indicated while the curves are the fit to a
quadratic function of k.
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Figure 3. Same as figure 1 for electron collisions with strontium. The results shown in (a) and
(b) were obtained in a 5st calculation with the target description obtained with the CIV3 orbitals.
The curves labelled 5st-SS correspond to a 5st calculation using SUPERSTRUCTURE orbitals. The
symbols in (a) and (c) represent the results of Yuan and Zhang [36]. In (d), the symbols are the
numerical results from the model indicated while the curves are the fit to a quadratic function of k.

low energies, the numerical calculations are by no means trivial and hence we regard these
numbers as preliminary. It is, however, very likely that the values of the scattering length in
all three systems are negative, with increasing magnitudes when going from Mg to Sr. The
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aT[0] (Rb) = -16.0 a.u. (Bahrim & Thumm 2000)

aT[0] (Na) = -11.0 a.u. (Burke, unpublished)

a[0] (Mg) = -2.5 a0 (Bartschat & Sadeghpour 2003)
a[0] (Ca) = -12 a0
a[0] (Sr) = -18 a0

! Alkali metals in 3Se:
scattering length =⇒ all
negative; form molecu-
lar Rydberg levels

! Alkali metals in 1Se:
scattering length =⇒
all positive; aT (Rb) =
0.2a0.

! Alkaline earth atoms in
2S: certainly large and
negative, as there are
no known s-wave bound
states

! Ca− forms in
2P 0(4s24p)

Notes:
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an outer electric heater. Argon was used as a buffer gas to
protect the quartz windows at the cold ends of the heat pipe
oven from the corrosive influence of the hot rubidium
vapor. The heat pipe was running in the heat pipe mode,
i.e., the rubidium pressure was equal to the buffer gas
pressure. It was possible to achieve a rubidium vapor
pressure of about 200 mbar. However, it is well known
that strong turbulent ’’fogs’’ (particle clouds) appear in the
transition regions between the hot vapor and the cold buffer
gas at vapor pressures larger than about 30 mbar. As shown
in [21], this effect can be efficiently removed with a help of
an additional rod heater built in along the heat pipe axis
which accomplished stable rubidium vapor conditions by
overheating the vapor. For example, for the maximum
temperature of !1100 K near to the central heater, the
metal bath temperature at the heat pipe wall was !800 K.

The absolute reduced absorption coefficients kR " k=N2

of the measured lines were obtained using the narrow
triplet molecular band at 605 nm as a reference for N de-
termination. The absorption of this molecular band was
calibrated using the far-wing absorption of the first reso-
nance lines [22], in the same way as for the corresponding
potassium triplet band [18]. To avoid spectral interference
of the line wings with the strongly temperature-dependent
Rb dimer spectrum, we made spatially resolved absorption
measurements in the overheated vapor. The spatially re-
solved absorption spectra were related to measurements in
thin absorption columns at various distances from the heat
pipe axis, i.e., in different temperature zones. By this the
dissociation of the ground state dimers could be varied and
dimer interferences with the atomic line shapes could be
excluded. The reduced absorption coefficients of the prin-
cipal series lines given below were found to be constant in
the applied temperature range.

The measured reduced absorption coefficients kR "
k=N2 of some principal series line are shown in Fig. 1.
The satellite sequences in these spectra are similar to those
found in the case of the Cs principal series lines [18]. As
seen from Fig. 1, the shapes of higher 5S# nP lines
become simpler. They are characterized by single sharp
blue satellites and weak red shoulders. Because of their
concise line shapes they seem to be appropriate candidates
for the comparison of experiment and theory. Thus, our
former calculations were extended from the high Rb
Rydberg states around n! 30 [1,2,4] to the regime of
lower-lying levels, from 9P to 12P.

Previous studies of ultra-long-range Rb dimers have
suggested that such extrema arise from two sources.
First, the potential of the perturber interacting with any
Rydberg state, even hydrogenic, gives rise to oscillatory
features that reflect the underlying nodal structure of the
Rydberg electron wavefunction. Second, for a nonhydro-
genic molecule, the breaking of the degeneracy of a single
n manifold due to the large quantum defects of the lower-l
states places their energies at points intermediate to the

energies of the high-l degenerate manifolds. Since the
molecular Rydberg state includes some components of
these states, the adiabatic potential can undergo avoided
crossings with each of the unperturbed atomic potentials.

The short-ranged interaction of the Rydberg electron
with the ground state perturber atom approaches a polar-
ization potential far from the atom, and its center lies far
from the ionic core where the Coulomb potential varies
slowly with the radial electron-ion coordinate r. This al-
lows the electron-perturber interaction to be approximated
as the scattering of a quasifree electron of fixed local
momentum from an atom. Far from the ion, a Rydberg
electron has little kinetic energy. Importantly, the low-
energy scattering of a p-wave electron from a neutral Rb
atom displays a sharp triplet shape resonance [3,4]. It is
this resonance that spawns avoided crossings and other
extrema near the atomic nP absorption lines, and whose
electronic structure resembles a butterfly when plotted as
in Fig. 3 of [4]. Note that the previously predicted [1,2]
trilobite states apparently have too little atomic P character
to be visible in line-broadening experiments that excite
directly out of the alkali atom ground states.

To perform a full ab initio calculation on the Rydberg
electron states of such a molecule would be exceedingly
difficult using existing quantum chemistry programs, due
to the large number of coupled Rydberg states that con-
tribute to the perturbed wave function and the large elec-
tron distances that are relevant. Through most of its range,
however, the Rydberg electron is subject only to the
Coulomb potential of the ionic core, modified by
l-dependent quantum defects that cause the electron
de Broglie waves to be phase shifted [23]. Only in the
region of the perturber does the potential become more
complicated. This has given reasonably accurate results
using a zero-range approximation to the potential, as was
generalized to higher-l scattering from the Fermi pseudo-
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FIG. 1. The reduced absorption coefficients kR$nP% "
k$nP%=N2

Rb of the quasistatic wings of some Rb 5S# nP lines
are plotted versus the wave number difference from the respec-
tive line centers. For better representation, the individual spectra
have been multiplied by different factors of 10 as indicated.
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Two different types of bound Rydberg molecules have
been proposed in recent years as intriguing candidates for
possible study. In the first case [1–5], a bound state is
created by the interaction between an excited atom (A!)
and a ground state atom (A). The properties of low-energy
scattering of the quasifree electron of the Rydberg atom A!

on the perturber A create the attraction needed for dimer
formation. These Rydberg molecules are comparable to the
size of the excited atoms, and the corresponding electronic
wave functions are characterized by specific spatial forms,
two of which are the ‘‘trilobite’’ and ‘‘butterfly’’ states.
These molecules are also predicted to be polar diatomic
molecules possessing dipole moments (even the homonu-
clear species) that are huge compared to typical polar
diatomic molecules. A growing body of theoretical evi-
dence strongly suggests the existence of these unusual
molecular states, whose Born-Oppenheimer potential
curves oscillate like a wave function (see, e.g., Refs. [6–
10]) But until now, their existence has not been confirmed
experimentally. The second type of bound molecular
Rydberg state is predicted to be created by the interaction
of two Rydberg atoms A! " A! at very large distances R
[11]. Here, the potential energy curve can be exclusively
described by the long-range electrostatic interaction.

Laser spectroscopic experiments performed in ultracold
gases ([12–14] and references therein) have provided evi-
dence for the existence of bound molecular Rydberg states
of the A! " A! type [12,14]. Our Letter is focused on the
experimental verification of the oscillatory bound state
potentials in the Rb! " Rb system associated with
electron-atom scattering resonances. We apply the well-
established method for spectral line wing absorption mea-
surement under thermal conditions [15] that reveal satel-
lites in the wings of collisionally broadened lines. The
positions, shapes, and intensities of satellites depend on
the difference potentials as functions of the interatomic
separation R. We were encouraged to make such measure-

ments since peculiar satellite structures have been ob-
served in the line wings of collisionally broadened
principal series lines of Cs, dating back to more than
30 years ago [16,17]. The absolute satellite strengths in
terms of reduced absorption coefficients were published
later for the 6S# nP (n $ 8–13) lines [18]. Similar satel-
lite features have also been observed in Rb spectra (see
remark in [18]), but never published, owing primarily to
our poor understanding of the physical origin of these
regular satellite features. The long history of investigations
of far-wing alkali line broadening resulted, for the first
resonance line of each species, in complete agreement
between theory and experiment (see, e.g., [19]).
Regarding the theory, there is a smooth transition between
ab initio calculations and the perturbation approach using
the long-range multipole interactions. Recent ab initio
calculations also yielded a satisfactory explanation of the
measured structure of the second principal series line of
Rb, the 5S# 6P transition [20]. However, for the transi-
tions to the third and higher resonance states neither
ab initio nor the usual perturbation calculations can explain
the pronounced satellite structures in the quasistatic region
of the line wings.

The experiments were performed with a Rb vapor-filled
heat pipe, using the classical white light absorption method
with a tungsten-halogen lamp and a 0.75 m Czerny-Turner
type monochromator supplied with a EMI 9789QA photo-
multiplier. Although the experimental arrangement is in
principle very simple, the realization of the experiment
required solving some technical problems connected with
the production of a stable rubidium vapor at pressures of
about 100 mbar (number density NRb % 1018 cm#3). This
was necessary to get stable and measurable absorption in
the line wings. The specific details of our experimental
arrangement are given in [21] and will be repeated here
only briefly. The rubidium vapor column was generated in
the middle part of a stainless-steel heat pipe by the use of
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protect the quartz windows at the cold ends of the heat pipe
oven from the corrosive influence of the hot rubidium
vapor. The heat pipe was running in the heat pipe mode,
i.e., the rubidium pressure was equal to the buffer gas
pressure. It was possible to achieve a rubidium vapor
pressure of about 200 mbar. However, it is well known
that strong turbulent ’’fogs’’ (particle clouds) appear in the
transition regions between the hot vapor and the cold buffer
gas at vapor pressures larger than about 30 mbar. As shown
in [21], this effect can be efficiently removed with a help of
an additional rod heater built in along the heat pipe axis
which accomplished stable rubidium vapor conditions by
overheating the vapor. For example, for the maximum
temperature of !1100 K near to the central heater, the
metal bath temperature at the heat pipe wall was !800 K.

The absolute reduced absorption coefficients kR " k=N2

of the measured lines were obtained using the narrow
triplet molecular band at 605 nm as a reference for N de-
termination. The absorption of this molecular band was
calibrated using the far-wing absorption of the first reso-
nance lines [22], in the same way as for the corresponding
potassium triplet band [18]. To avoid spectral interference
of the line wings with the strongly temperature-dependent
Rb dimer spectrum, we made spatially resolved absorption
measurements in the overheated vapor. The spatially re-
solved absorption spectra were related to measurements in
thin absorption columns at various distances from the heat
pipe axis, i.e., in different temperature zones. By this the
dissociation of the ground state dimers could be varied and
dimer interferences with the atomic line shapes could be
excluded. The reduced absorption coefficients of the prin-
cipal series lines given below were found to be constant in
the applied temperature range.

The measured reduced absorption coefficients kR "
k=N2 of some principal series line are shown in Fig. 1.
The satellite sequences in these spectra are similar to those
found in the case of the Cs principal series lines [18]. As
seen from Fig. 1, the shapes of higher 5S# nP lines
become simpler. They are characterized by single sharp
blue satellites and weak red shoulders. Because of their
concise line shapes they seem to be appropriate candidates
for the comparison of experiment and theory. Thus, our
former calculations were extended from the high Rb
Rydberg states around n! 30 [1,2,4] to the regime of
lower-lying levels, from 9P to 12P.

Previous studies of ultra-long-range Rb dimers have
suggested that such extrema arise from two sources.
First, the potential of the perturber interacting with any
Rydberg state, even hydrogenic, gives rise to oscillatory
features that reflect the underlying nodal structure of the
Rydberg electron wavefunction. Second, for a nonhydro-
genic molecule, the breaking of the degeneracy of a single
n manifold due to the large quantum defects of the lower-l
states places their energies at points intermediate to the

energies of the high-l degenerate manifolds. Since the
molecular Rydberg state includes some components of
these states, the adiabatic potential can undergo avoided
crossings with each of the unperturbed atomic potentials.

The short-ranged interaction of the Rydberg electron
with the ground state perturber atom approaches a polar-
ization potential far from the atom, and its center lies far
from the ionic core where the Coulomb potential varies
slowly with the radial electron-ion coordinate r. This al-
lows the electron-perturber interaction to be approximated
as the scattering of a quasifree electron of fixed local
momentum from an atom. Far from the ion, a Rydberg
electron has little kinetic energy. Importantly, the low-
energy scattering of a p-wave electron from a neutral Rb
atom displays a sharp triplet shape resonance [3,4]. It is
this resonance that spawns avoided crossings and other
extrema near the atomic nP absorption lines, and whose
electronic structure resembles a butterfly when plotted as
in Fig. 3 of [4]. Note that the previously predicted [1,2]
trilobite states apparently have too little atomic P character
to be visible in line-broadening experiments that excite
directly out of the alkali atom ground states.

To perform a full ab initio calculation on the Rydberg
electron states of such a molecule would be exceedingly
difficult using existing quantum chemistry programs, due
to the large number of coupled Rydberg states that con-
tribute to the perturbed wave function and the large elec-
tron distances that are relevant. Through most of its range,
however, the Rydberg electron is subject only to the
Coulomb potential of the ionic core, modified by
l-dependent quantum defects that cause the electron
de Broglie waves to be phase shifted [23]. Only in the
region of the perturber does the potential become more
complicated. This has given reasonably accurate results
using a zero-range approximation to the potential, as was
generalized to higher-l scattering from the Fermi pseudo-
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Two different types of bound Rydberg molecules have
been proposed in recent years as intriguing candidates for
possible study. In the first case [1–5], a bound state is
created by the interaction between an excited atom (A!)
and a ground state atom (A). The properties of low-energy
scattering of the quasifree electron of the Rydberg atom A!

on the perturber A create the attraction needed for dimer
formation. These Rydberg molecules are comparable to the
size of the excited atoms, and the corresponding electronic
wave functions are characterized by specific spatial forms,
two of which are the ‘‘trilobite’’ and ‘‘butterfly’’ states.
These molecules are also predicted to be polar diatomic
molecules possessing dipole moments (even the homonu-
clear species) that are huge compared to typical polar
diatomic molecules. A growing body of theoretical evi-
dence strongly suggests the existence of these unusual
molecular states, whose Born-Oppenheimer potential
curves oscillate like a wave function (see, e.g., Refs. [6–
10]) But until now, their existence has not been confirmed
experimentally. The second type of bound molecular
Rydberg state is predicted to be created by the interaction
of two Rydberg atoms A! " A! at very large distances R
[11]. Here, the potential energy curve can be exclusively
described by the long-range electrostatic interaction.

Laser spectroscopic experiments performed in ultracold
gases ([12–14] and references therein) have provided evi-
dence for the existence of bound molecular Rydberg states
of the A! " A! type [12,14]. Our Letter is focused on the
experimental verification of the oscillatory bound state
potentials in the Rb! " Rb system associated with
electron-atom scattering resonances. We apply the well-
established method for spectral line wing absorption mea-
surement under thermal conditions [15] that reveal satel-
lites in the wings of collisionally broadened lines. The
positions, shapes, and intensities of satellites depend on
the difference potentials as functions of the interatomic
separation R. We were encouraged to make such measure-

ments since peculiar satellite structures have been ob-
served in the line wings of collisionally broadened
principal series lines of Cs, dating back to more than
30 years ago [16,17]. The absolute satellite strengths in
terms of reduced absorption coefficients were published
later for the 6S# nP (n $ 8–13) lines [18]. Similar satel-
lite features have also been observed in Rb spectra (see
remark in [18]), but never published, owing primarily to
our poor understanding of the physical origin of these
regular satellite features. The long history of investigations
of far-wing alkali line broadening resulted, for the first
resonance line of each species, in complete agreement
between theory and experiment (see, e.g., [19]).
Regarding the theory, there is a smooth transition between
ab initio calculations and the perturbation approach using
the long-range multipole interactions. Recent ab initio
calculations also yielded a satisfactory explanation of the
measured structure of the second principal series line of
Rb, the 5S# 6P transition [20]. However, for the transi-
tions to the third and higher resonance states neither
ab initio nor the usual perturbation calculations can explain
the pronounced satellite structures in the quasistatic region
of the line wings.

The experiments were performed with a Rb vapor-filled
heat pipe, using the classical white light absorption method
with a tungsten-halogen lamp and a 0.75 m Czerny-Turner
type monochromator supplied with a EMI 9789QA photo-
multiplier. Although the experimental arrangement is in
principle very simple, the realization of the experiment
required solving some technical problems connected with
the production of a stable rubidium vapor at pressures of
about 100 mbar (number density NRb % 1018 cm#3). This
was necessary to get stable and measurable absorption in
the line wings. The specific details of our experimental
arrangement are given in [21] and will be repeated here
only briefly. The rubidium vapor column was generated in
the middle part of a stainless-steel heat pipe by the use of
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potential by Omont [24]. This method, however, suffers
from instabilities related to divergent behavior close to a
resonance energy, and thus becomes inaccurate in the
regions of the potential giving rise to avoided crossings.

An alternative method that takes similar advantage of
the simplicity of the potential away from the perturber
utilizes the Coulomb Green’s function, which gives an
analytical solution to the wave function via the Kirchhoff
integral method or similar techniques [4,5]. First the for-
mal solution is written in terms of the Coulomb Green’s
function Gmod

c ! ~r; ~r0", with appropriate modifying terms
added to correct for the atomic Rydberg state quantum
defects [5]. Application of Green’s theorem converts the
resulting expression into a surface integral over a sphere
enclosing the perturber, which implies that we can interpret
the ground state perturber as simply modifying the bound-
ary conditions of the solution (for details see Eq. 14 of [3],
or [25]). The matching surface must be sufficiently large
that the scattering from the perturber can be described at
that radius entirely in terms of the asymptotic phase shifts.
Next the solution is expanded in partial waves at the
boundary of the surface of integration using the spherical
Bessel functions, !! ~r" # P

lmAlm$jl!kx" cos!l % nl!kx"&
sin!l'Ylm!"x;#x". The effect of the perturber interaction is
all contained in the phase shifts !l!"". Projecting ! onto
the spherical harmonics gives a linear system of equations
for the unknown coefficients Alm. The bound state energies
are associated with zeroes of a determinantal equation.

A detailed view of one absorption line is presented in
Fig. 2, where the calculated difference potential curves
around the Rb 11P level are compared with the measured
shape of the 5S% 11P line. In the case of a single potential
curve V!R" the quasistatic formula for the reduced absorp-
tion coefficient is kR # 4$2e2h

mc f!R"R2=jdV!R"=dRj: At in-
ternuclear distances of interest the ground state potential is
predominantly given by the van der Waals interaction [20].
According to data taken from [26], the corresponding C6

coefficient is 4660 a.u., which, e.g., yields an interaction
energy "E0 ( %0:065 cm%1 at R # 50 a:u:. Therefore,
the difference potential corresponds in practice to the
excited state potential alone here. To calculate the theo-
retical line shape of kR, the R-dependent oscillator
strengths f!R" are needed, but they have not yet been
calculated in this study. Nevertheless, the correspondence
between the extrema of the calculated potential curves and
the satellite positions suggest that theory and experiment
generally agree. This agreement for a range of n values
seems unlikely to be fortuitous. Hence we regard this as a
confirmation of the existence of oscillatory long-range
potential curves in these Rydberg ground state molecule
systems.

The general agreement between calculated potential
curves and measured absorption profiles is illustrated in
(Fig. 3.) Here the energy scale is converted to an effec-
tive quantum number scale using En ) "E% E0 # Ei %

RRb=n2eff ; , where Ei and RRb are the ionization limit and
the Rydberg constant for Rb. On this scale, atomic and
molecular levels with successive principal quantum num-
bers n are approximately equidistant, which provides in-
sight into the theoretical and experimental regularities. The

 

FIG. 2. 3# Born-Oppenheimer difference potential curves in
the vicinity of the Rb 11P level (left) compared with the
measured reduced absorption coefficient of the Rb 5S% 11P
line (right). The upper and lower gray potential curves are
connected with the 12S and with the hydrogenic n, l states
having l * 3, respectively. The strong blue satellite corresponds
to the minimum of the potential curve that correlates adiabati-
cally with the 10D level, the minimum originating from an
avoided crossing between the steeply rising butterfly potential
curve [4] and the 11P curve. The weak red-shifted shoulders
correspond to minima in the potential curve that dissociates
adiabatically to the 11P asymptote, but whose electronic char-
acter near the minima is also predominantly ‘‘butterflylike’’.

 

FIG. 3. Calculated 3# Rb+ % Rb Born-Oppenheimer excited
state potential curves (left) and the relevant experimental line
shapes (right) of the Rb 5S% nP (n # 9, 10, 11, 12) transitions.
In contrast to Fig. 2, the energies are represented in terms of the
effective principal quantum numbers neff . The positions of the
potential curves minima which produce the line satellites are
labeled by gray circles.
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boundary condition on the atomic solution [15]. This approach has been applied fruitfully to
the study of electron transfer effects in atomic collisions [16], particularly those in which the
collision is assisted by a laser field that excites one of the atoms into a Rydberg state [17,18].
A second, and fully equivalent, method applies the zero-range potential as an additional term
in the molecular Hamiltonian, consisting of a sum of separable projections for each l-channel
onto angular momentum eigenstates [19].

Our treatment of this problem follows a method developed by Omont [20], based on
approximating the zero-range pseudopotential with an l-expansion of the R-matrix. For
the present results, we shall be content to examine only systems for which the scattering
is dominated by the s- and p-wave partial waves, although the same approach should also
apply to perturbers with d-wave or f-wave shape resonances (such as N2 or SF6.) We choose to
study the 87Rb Rydberg atom, whose large ionic core destroys the orbital angular momentum
degeneracy and whose heavy mass ensures the existence of many closely spaced vibrational
levels. Rubidium, of course, is a favourite atom utilized in the study of ultracold atomic gases.
We shall further assume that experimental ability exists to prepare a Rydberg state containing
high-angular-momentum components, either by a multiphoton process or by the imposition of
a weak electric field that breaks the dipole selection rule.

The Fermi pseudopotential, appropriate for s-wave scattering, is given by

Vs(!r, !R) = 2πAT [k(R)]δ(!r − !R) (1)

where !r is the position of the electron, !R is the position of the perturber, both from the ionic
core, k(R) is the valence electron wavenumber, and we define the triplet scattering length for
electron–perturber collisions as AT = − tan δT

0 /k. The energy variation of the triplet s-wave
phase shift δT

0 , comes from its implicit dependence on R, according to 1
2k2(R) = − 1

2n2 + 1
R

, for
a Rydberg electron with principal quantum number n. Following Omont, the matrix element
associated with p-wave electron–perturber scattering can be written as

〈#1|Vp|#2〉 =− 6π tan δT
1

k3(R)
!∇#1( !R) · !∇′#2( !R) (2)

where δT
1 is now the triplet p-wave scattering phase shift. We adopt the ab initio calculations

of Bahrim et al [21–23] for the s- and p-wave triplet e−–Rb(5s) scattering phase shifts.
In order to generate a bound state, the perturbation should ideally result in a negative

energy shift, though bound states might in some cases result from repulsive scattering lengths.
For s-wave scattering, a negative shift translates into a negative scattering length; for p-wave
scattering, the tangent of the phase shift must be positive. Qualitatively, these pseudopotentials
may be viewed as selecting a linear combination of atomic states that maximizes either the
value of the wavefunction (s-wave) or of its derivative (p-wave) at the position of the perturber.
Note that for the p-wave correction, the derivative acts in all three spatial directions, giving
rise to two possible sets of states: those that maximize the gradient parallel to the internuclear
axis, and those that maximize the gradient perpendicular to it. The former have a nodal plane
perpendicular to the internuclear axis, and thus a $ molecular symmetry (m = 0), and the
latter place the nodal plane along the axis, and hence have a % molecular symmetry (m = 1).

At the position of a resonance, the tangent of the phase shift diverges, resulting in an
unphysical form of the interaction potential. In practice, however, the energy eigenstate is
bounded by manifolds corresponding to n + 1 and n − 1, and is subject to level repulsion by
states of identical symmetry attached to the adjacent manifolds. This permits a diagonalization
even at energies close to the resonance energy, circumventing the need to resort to explicit
renormalization of the potential. The number of manifolds retained above and below the
n-value of interest can be varied to test the eigenvalue stability.
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boundary condition on the atomic solution [15]. This approach has been applied fruitfully to
the study of electron transfer effects in atomic collisions [16], particularly those in which the
collision is assisted by a laser field that excites one of the atoms into a Rydberg state [17,18].
A second, and fully equivalent, method applies the zero-range potential as an additional term
in the molecular Hamiltonian, consisting of a sum of separable projections for each l-channel
onto angular momentum eigenstates [19].

Our treatment of this problem follows a method developed by Omont [20], based on
approximating the zero-range pseudopotential with an l-expansion of the R-matrix. For
the present results, we shall be content to examine only systems for which the scattering
is dominated by the s- and p-wave partial waves, although the same approach should also
apply to perturbers with d-wave or f-wave shape resonances (such as N2 or SF6.) We choose to
study the 87Rb Rydberg atom, whose large ionic core destroys the orbital angular momentum
degeneracy and whose heavy mass ensures the existence of many closely spaced vibrational
levels. Rubidium, of course, is a favourite atom utilized in the study of ultracold atomic gases.
We shall further assume that experimental ability exists to prepare a Rydberg state containing
high-angular-momentum components, either by a multiphoton process or by the imposition of
a weak electric field that breaks the dipole selection rule.

The Fermi pseudopotential, appropriate for s-wave scattering, is given by

Vs(!r, !R) = 2πAT [k(R)]δ(!r − !R) (1)

where !r is the position of the electron, !R is the position of the perturber, both from the ionic
core, k(R) is the valence electron wavenumber, and we define the triplet scattering length for
electron–perturber collisions as AT = − tan δT
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phase shift δT
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, for
a Rydberg electron with principal quantum number n. Following Omont, the matrix element
associated with p-wave electron–perturber scattering can be written as

〈#1|Vp|#2〉 =− 6π tan δT
1

k3(R)
!∇#1( !R) · !∇′#2( !R) (2)

where δT
1 is now the triplet p-wave scattering phase shift. We adopt the ab initio calculations

of Bahrim et al [21–23] for the s- and p-wave triplet e−–Rb(5s) scattering phase shifts.
In order to generate a bound state, the perturbation should ideally result in a negative

energy shift, though bound states might in some cases result from repulsive scattering lengths.
For s-wave scattering, a negative shift translates into a negative scattering length; for p-wave
scattering, the tangent of the phase shift must be positive. Qualitatively, these pseudopotentials
may be viewed as selecting a linear combination of atomic states that maximizes either the
value of the wavefunction (s-wave) or of its derivative (p-wave) at the position of the perturber.
Note that for the p-wave correction, the derivative acts in all three spatial directions, giving
rise to two possible sets of states: those that maximize the gradient parallel to the internuclear
axis, and those that maximize the gradient perpendicular to it. The former have a nodal plane
perpendicular to the internuclear axis, and thus a $ molecular symmetry (m = 0), and the
latter place the nodal plane along the axis, and hence have a % molecular symmetry (m = 1).

At the position of a resonance, the tangent of the phase shift diverges, resulting in an
unphysical form of the interaction potential. In practice, however, the energy eigenstate is
bounded by manifolds corresponding to n + 1 and n − 1, and is subject to level repulsion by
states of identical symmetry attached to the adjacent manifolds. This permits a diagonalization
even at energies close to the resonance energy, circumventing the need to resort to explicit
renormalization of the potential. The number of manifolds retained above and below the
n-value of interest can be varied to test the eigenvalue stability.
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For s-wave scattering, a negative shift translates into a negative scattering length; for p-wave
scattering, the tangent of the phase shift must be positive. Qualitatively, these pseudopotentials
may be viewed as selecting a linear combination of atomic states that maximizes either the
value of the wavefunction (s-wave) or of its derivative (p-wave) at the position of the perturber.
Note that for the p-wave correction, the derivative acts in all three spatial directions, giving
rise to two possible sets of states: those that maximize the gradient parallel to the internuclear
axis, and those that maximize the gradient perpendicular to it. The former have a nodal plane
perpendicular to the internuclear axis, and thus a $ molecular symmetry (m = 0), and the
latter place the nodal plane along the axis, and hence have a % molecular symmetry (m = 1).

At the position of a resonance, the tangent of the phase shift diverges, resulting in an
unphysical form of the interaction potential. In practice, however, the energy eigenstate is
bounded by manifolds corresponding to n + 1 and n − 1, and is subject to level repulsion by
states of identical symmetry attached to the adjacent manifolds. This permits a diagonalization
even at energies close to the resonance energy, circumventing the need to resort to explicit
renormalization of the potential. The number of manifolds retained above and below the
n-value of interest can be varied to test the eigenvalue stability.
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long-lived molecular state presents an intriguing opportu-
nity for manipulation and control through the application
of an electric field or field gradient.

Throughout the present Letter, we adopt Rb2 as our
prototype Rydberg molecule and demonstrate potential
curves for states like Rb!ndj" 1 Rb!5s" that display mul-
tiple minima at very large internuclear separations. The
existence of these oscillatory extrema in such potential
curves can be understood most simply through the use
of a Fermi-type pseudopotential [8,11] to characterize
the interaction between the atomic Rydberg electron and
a ground state Rb(5s) atom. If !r is the position of the
Rydberg electron relative to a Rb1 ground state ion,
and !R is the position of the Rb(5s) atom relative to the
ion, then the interaction potential can be taken, in a first
approximation, as

V !!r , !R" " 2pAT #k!R"$d!!r 2 !R" . (1)

Here AT #k$ % 2 tandT
0 !k"&k is the energy-dependent

triplet s-wave scattering length for electron collisions
with ground state Rb(5s) atoms, defined in terms of the
triplet s-wave phase shift dT

0 !k". The relevant electron
wave number k!R" is defined by the kinetic energy of
the Rydberg electron at energy ´ " 21&2n2 when it
collides with a perturbing atom at a distance R from the
Rb1 ion, namely, 1

2k2!R" " ´ 1 1&R. The accuracy of
diatomic potential curves obtained within the Fermi model
is improved [7,9,10] if an energy-dependent (and hence
R-dependent) scattering length is adopted. We use the
zero-energy scattering length AT #0$ " 216.05 calculated
by Bahrim et al. [12].

The negative value of the triplet scattering length im-
plies that states of predominantly triplet character might be
sufficiently attractive to produce bound vibrational states
relative to the atomic dissociation threshold. Accordingly,
we consider in this Letter only states that are controlled by
the triplet scattering length. (The singlet value of Ref. [12]
is AS " 0.627, but it will not play a role in the calcula-
tions discussed here.) The energy dependence of AT #k$ has
been determined from AT #0$ and the Rb(5s) polarizability,
a5s " 319.2 [13], using a generalized quantum defect the-
ory [14], which is applicable over the entire relevant energy
range.

When spin-orbit interactions can be neglected, the in-
teresting 3Sg and 3Su Born-Oppenheimer potential curves
for Rb!nd" 1 Rb!5s" are both given in the Fermi model
[11] by U!R" " End 1 2pAT #k!R"$ jcnd0! !R"j2. This ex-
pression in terms of the unperturbed atomic Rydberg state
wave function cnd0 results in highly oscillatory Born-
Oppenheimer potential curves. Previous studies [7,9,10]
showed that the Fermi pseudopotential description can
largely reproduce the results of extensive ab initio cal-
culations of diatomic potential curves, which adds to our
confidence in this approach. A recent accurate ab initio

calculation of LiH, LiHe, and LiNe potential curves has
confirmed the existence of similar oscillations associated
with atomic orbital undulations [15]. These oscillations
are also seen in recent NaH calculations [16].

Figure 1(a) shows typical adiabatic potential curves
associated with the low-l class for Rb2 states of V " 1
symmetry in the vicinity of the 30dj 1 5s dissociation
thresholds. Here V denotes the projection of the total
electronic orbital plus spin angular momentum onto the
internuclear axis. These molecular Rydberg states are
best characterized in Hund’s case (c), because the atomic
spin-orbit splitting is larger than the electron-perturber
interaction. While the oscillatory potential curves do
track the radial Rydberg wave function, a surprising
feature is the vanishing of the perturbation shift near
R " 450 a.u. In fact, this vanishing corresponds to the
Ramsauer-Townsend zero of the 3S e2-Rb(5s) phase shift
at 0.042 eV (see, e.g., Fig. 4 of Ref. [12]).

(a)

(b)

FIG. 1. (a) Typical Born-Oppenheimer potential curve for the
low-l class of molecular Rydberg states. The potential curve
shown is predicted for the Rb2 V " 1 molecular states formed
from the 30dj"3&2 1 5s states of the separated atoms and has
predominantly triplet spin character. The lowest vibrational
levels and their corresponding vibrational wave functions are
also indicated. (b) 3S Rb2 potential curves for the n " 30 per-
turbed hydrogenic class of molecular Rydberg states. Several
of the lowest vibrational levels are depicted in the inset. The
zero of the energy scale in (b) is taken to be the energy of the
degenerate hydrogenic manifold for n " 30.
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Throughout the present Letter, we adopt Rb2 as our
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curves for states like Rb!ndj" 1 Rb!5s" that display mul-
tiple minima at very large internuclear separations. The
existence of these oscillatory extrema in such potential
curves can be understood most simply through the use
of a Fermi-type pseudopotential [8,11] to characterize
the interaction between the atomic Rydberg electron and
a ground state Rb(5s) atom. If !r is the position of the
Rydberg electron relative to a Rb1 ground state ion,
and !R is the position of the Rb(5s) atom relative to the
ion, then the interaction potential can be taken, in a first
approximation, as

V !!r , !R" " 2pAT #k!R"$d!!r 2 !R" . (1)

Here AT #k$ % 2 tandT
0 !k"&k is the energy-dependent

triplet s-wave scattering length for electron collisions
with ground state Rb(5s) atoms, defined in terms of the
triplet s-wave phase shift dT

0 !k". The relevant electron
wave number k!R" is defined by the kinetic energy of
the Rydberg electron at energy ´ " 21&2n2 when it
collides with a perturbing atom at a distance R from the
Rb1 ion, namely, 1

2k2!R" " ´ 1 1&R. The accuracy of
diatomic potential curves obtained within the Fermi model
is improved [7,9,10] if an energy-dependent (and hence
R-dependent) scattering length is adopted. We use the
zero-energy scattering length AT #0$ " 216.05 calculated
by Bahrim et al. [12].

The negative value of the triplet scattering length im-
plies that states of predominantly triplet character might be
sufficiently attractive to produce bound vibrational states
relative to the atomic dissociation threshold. Accordingly,
we consider in this Letter only states that are controlled by
the triplet scattering length. (The singlet value of Ref. [12]
is AS " 0.627, but it will not play a role in the calcula-
tions discussed here.) The energy dependence of AT #k$ has
been determined from AT #0$ and the Rb(5s) polarizability,
a5s " 319.2 [13], using a generalized quantum defect the-
ory [14], which is applicable over the entire relevant energy
range.

When spin-orbit interactions can be neglected, the in-
teresting 3Sg and 3Su Born-Oppenheimer potential curves
for Rb!nd" 1 Rb!5s" are both given in the Fermi model
[11] by U!R" " End 1 2pAT #k!R"$ jcnd0! !R"j2. This ex-
pression in terms of the unperturbed atomic Rydberg state
wave function cnd0 results in highly oscillatory Born-
Oppenheimer potential curves. Previous studies [7,9,10]
showed that the Fermi pseudopotential description can
largely reproduce the results of extensive ab initio cal-
culations of diatomic potential curves, which adds to our
confidence in this approach. A recent accurate ab initio

calculation of LiH, LiHe, and LiNe potential curves has
confirmed the existence of similar oscillations associated
with atomic orbital undulations [15]. These oscillations
are also seen in recent NaH calculations [16].

Figure 1(a) shows typical adiabatic potential curves
associated with the low-l class for Rb2 states of V " 1
symmetry in the vicinity of the 30dj 1 5s dissociation
thresholds. Here V denotes the projection of the total
electronic orbital plus spin angular momentum onto the
internuclear axis. These molecular Rydberg states are
best characterized in Hund’s case (c), because the atomic
spin-orbit splitting is larger than the electron-perturber
interaction. While the oscillatory potential curves do
track the radial Rydberg wave function, a surprising
feature is the vanishing of the perturbation shift near
R " 450 a.u. In fact, this vanishing corresponds to the
Ramsauer-Townsend zero of the 3S e2-Rb(5s) phase shift
at 0.042 eV (see, e.g., Fig. 4 of Ref. [12]).

(a)

(b)

FIG. 1. (a) Typical Born-Oppenheimer potential curve for the
low-l class of molecular Rydberg states. The potential curve
shown is predicted for the Rb2 V " 1 molecular states formed
from the 30dj"3&2 1 5s states of the separated atoms and has
predominantly triplet spin character. The lowest vibrational
levels and their corresponding vibrational wave functions are
also indicated. (b) 3S Rb2 potential curves for the n " 30 per-
turbed hydrogenic class of molecular Rydberg states. Several
of the lowest vibrational levels are depicted in the inset. The
zero of the energy scale in (b) is taken to be the energy of the
degenerate hydrogenic manifold for n " 30.
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Figure 1. (a) 3! Born–Oppenheimer potential curves for states arising from both s-wave
and p-wave scattering. Several of the lowest vibrational levels, along with their associated
wavefunctions, are shown in the inset. The zero of the energy axis is taken to lie at the position of
the n = 30 manifold. (b) 3" Born–Oppenheimer potential curve arising from p-wave scattering.

The Born–Oppenheimer potential curves (both s- and p-waves) associated with
the ! molecular symmetry are shown in figure 1(a), and the curve for the " symmetry state
(possible for p-wave only) is shown in figure 1(b). The associated s- and p-wave phase shifts,
as functions of position, are shown in figure 2. Recall that the phase shifts at the perturber R

are implicit functions of R as a result of the change in the local kinetic energy of the scattered
electron. The most prominent qualitative features of the potentials are directly controlled by
the energy dependence of the phase shift. For example, the point at which the ! s-wave
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boundary condition on the atomic solution [15]. This approach has been applied fruitfully to
the study of electron transfer effects in atomic collisions [16], particularly those in which the
collision is assisted by a laser field that excites one of the atoms into a Rydberg state [17, 18].
A second, and fully equivalent, method applies the zero-range potential as an additional term
in the molecular Hamiltonian, consisting of a sum of separable projections for each l-channel
onto angular momentum eigenstates [19].

Our treatment of this problem follows a method developed by Omont [20], based on
approximating the zero-range pseudopotential with an l-expansion of the R-matrix. For
the present results, we shall be content to examine only systems for which the scattering
is dominated by the s- and p-wave partial waves, although the same approach should also
apply to perturbers with d-wave or f-wave shape resonances (such as N2 or SF6.) We choose to
study the 87Rb Rydberg atom, whose large ionic core destroys the orbital angular momentum
degeneracy and whose heavy mass ensures the existence of many closely spaced vibrational
levels. Rubidium, of course, is a favourite atom utilized in the study of ultracold atomic gases.
We shall further assume that experimental ability exists to prepare a Rydberg state containing
high-angular-momentum components, either by a multiphoton process or by the imposition of
a weak electric field that breaks the dipole selection rule.

The Fermi pseudopotential, appropriate for s-wave scattering, is given by

Vs(!r, !R) = 2πAT [k(R)]δ(!r − !R) (1)

where !r is the position of the electron, !R is the position of the perturber, both from the ionic
core, k(R) is the valence electron wavenumber, and we define the triplet scattering length for
electron–perturber collisions as AT = − tan δT

0 /k. The energy variation of the triplet s-wave
phase shift δT

0 , comes from its implicit dependence on R, according to 1
2k2(R) = − 1

2n2 + 1
R

, for
a Rydberg electron with principal quantum number n. Following Omont, the matrix element
associated with p-wave electron–perturber scattering can be written as

〈#1|Vp|#2〉 =− 6π tan δT
1

k3(R)
!∇#1( !R) · !∇′#2( !R) (2)

where δT
1 is now the triplet p-wave scattering phase shift. We adopt the ab initio calculations

of Bahrim et al [21–23] for the s- and p-wave triplet e−–Rb(5s) scattering phase shifts.
In order to generate a bound state, the perturbation should ideally result in a negative

energy shift, though bound states might in some cases result from repulsive scattering lengths.
For s-wave scattering, a negative shift translates into a negative scattering length; for p-wave
scattering, the tangent of the phase shift must be positive. Qualitatively, these pseudopotentials
may be viewed as selecting a linear combination of atomic states that maximizes either the
value of the wavefunction (s-wave) or of its derivative (p-wave) at the position of the perturber.
Note that for the p-wave correction, the derivative acts in all three spatial directions, giving
rise to two possible sets of states: those that maximize the gradient parallel to the internuclear
axis, and those that maximize the gradient perpendicular to it. The former have a nodal plane
perpendicular to the internuclear axis, and thus a $ molecular symmetry (m = 0), and the
latter place the nodal plane along the axis, and hence have a % molecular symmetry (m = 1).

At the position of a resonance, the tangent of the phase shift diverges, resulting in an
unphysical form of the interaction potential. In practice, however, the energy eigenstate is
bounded by manifolds corresponding to n + 1 and n − 1, and is subject to level repulsion by
states of identical symmetry attached to the adjacent manifolds. This permits a diagonalization
even at energies close to the resonance energy, circumventing the need to resort to explicit
renormalization of the potential. The number of manifolds retained above and below the
n-value of interest can be varied to test the eigenvalue stability.
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Figure 1. (a) 3! Born–Oppenheimer potential curves for states arising from both s-wave
and p-wave scattering. Several of the lowest vibrational levels, along with their associated
wavefunctions, are shown in the inset. The zero of the energy axis is taken to lie at the position of
the n = 30 manifold. (b) 3" Born–Oppenheimer potential curve arising from p-wave scattering.
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II. INTERACTIONS AND MOLECULAR HAMILTONIAN

In the framework of the Born-Oppenheimer approximation the interatomic potential en-

ergy for collision between a Rydberg atom and a ground state atom, in the absence of any

external field, is constructed, as in Ref. [13, 16] from the contact interaction of the Rydberg

electron with the ground state atom; the so-called Fermi pseudopotential

V (r,R) = 2πAT [k(R)]δ(r − R). (1)

Here r and R are, respectively, the relative position of the Rydberg electron with respect

to its parent ion, and the relative position of the ion to the ground neutral atom. The

momentum-dependent scattering length, AT [k] ≡ − tan δT
0 (k)/k, belongs to the triplet (S =

1) scattering of the electron from the spin-1/2 alkali metal ground state atom, δT
0 (k) is the

corresponding s-wave phase shift. The trilobite molecular states are formed from a sum over

the nearly degenerate manifold of orbital angular momentum states with l ≥ lmin, as

E(R) = − 1

2n2
+ 2πAT [k(R)]

n−1∑

l=lmin

2l + 1

4π
Rnl(R)2, (2)

where Rnl(R) are the hydrogenic radial wave functions with the quantum numbers, n and

l. lmin refers to the smallest angular momentum quantum number at which, for a given n,

the quantum defects of the Rydberg energies are negligible. The linear momentum of the

Rydberg electron at the colliding point with the neutral perturber can be approximated

according to 1
2k

2 = 1
R − 1

2n2 . Beyond the classical turning point, the zero-energy scattering

length for the 3S symmetry (AT [0] = −16.05 a.u.) [17] for e−-Rb(5s) is used.

The total non-relativistic BO Hamiltonian in the presence of a magnetic field of arbitrary

strength is then given by

H =
1

2
p2 + V (r) +

1

2
B · L +

1

8
[B × r]2 + 2πAT [k(R)]δ(r − R), (3)

where the first term is the field-free kinetic energy of the electron and V (r) is the effective

one-body potential felt by the valence electron when interacting with the ionic core. L is the

electronic orbital angular momentum in the molecular-fixed frame and B is the magnetic

field vector. The direction of the magnetic field is assumed to coincide with z-axis of the

coordinate system. Due to rotational invariance, the vector R defining the internuclear axis,

3
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electron with the ground state atom; the so-called Fermi pseudopotential
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Here r and R are, respectively, the relative position of the Rydberg electron with respect

to its parent ion, and the relative position of the ion to the ground neutral atom. The

momentum-dependent scattering length, AT [k] ≡ − tan δT
0 (k)/k, belongs to the triplet (S =

1) scattering of the electron from the spin-1/2 alkali metal ground state atom, δT
0 (k) is the

corresponding s-wave phase shift. The trilobite molecular states are formed from a sum over

the nearly degenerate manifold of orbital angular momentum states with l ≥ lmin, as

E(R) = − 1

2n2
+ 2πAT [k(R)]

n−1∑

l=lmin

2l + 1

4π
Rnl(R)2, (2)

where Rnl(R) are the hydrogenic radial wave functions with the quantum numbers, n and

l. lmin refers to the smallest angular momentum quantum number at which, for a given n,

the quantum defects of the Rydberg energies are negligible. The linear momentum of the

Rydberg electron at the colliding point with the neutral perturber can be approximated

according to 1
2k

2 = 1
R − 1

2n2 . Beyond the classical turning point, the zero-energy scattering

length for the 3S symmetry (AT [0] = −16.05 a.u.) [17] for e−-Rb(5s) is used.

The total non-relativistic BO Hamiltonian in the presence of a magnetic field of arbitrary

strength is then given by

H =
1

2
p2 + V (r) +
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2
B · L +

1

8
[B × r]2 + 2πAT [k(R)]δ(r − R), (3)

where the first term is the field-free kinetic energy of the electron and V (r) is the effective

one-body potential felt by the valence electron when interacting with the ionic core. L is the

electronic orbital angular momentum in the molecular-fixed frame and B is the magnetic

field vector. The direction of the magnetic field is assumed to coincide with z-axis of the

coordinate system. Due to rotational invariance, the vector R defining the internuclear axis,
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Observation of ultralong-range Rydberg molecules
Vera Bendkowsky1, Björn Butscher1, Johannes Nipper1, James P. Shaffer1,2, Robert Löw1 & Tilman Pfau1

Rydberg atoms have an electron in a state with a very high principal
quantum number, and as a result can exhibit unusually long-range
interactions. One example is the bonding of two such atoms by
multipole forces to form Rydberg–Rydberg molecules with very
large internuclear distances1–3. Notably, bonding interactions can
also arise from the low-energy scattering of aRydberg electronwith
negative scattering length from a ground-state atom4,5. In this case,
the scattering-induced attractive interaction binds the ground-
state atom to the Rydberg atom at a well-localized position within
the Rydberg electron wavefunction and thereby yields giant mole-
cules that can have internuclear separations of several thousand
Bohr radii6–8. Here we report the spectroscopic characterization
of such exoticmolecular states formedby rubidiumRydberg atoms
that are in the spherically symmetric s state and have principal
quantum numbers, n, between 34 and 40. We find that the spectra
of the vibrational ground state and of the first excited state of the
Rydberg molecule, the rubidium dimer Rb(5s)–Rb(ns), agree well
with simple model predictions. The data allow us to extract the
s-wave scattering length for scattering between the Rydberg elec-
tron and the ground-state atom, Rb(5s), in the low-energy regime
(kinetic energy,,100meV), and to determine the lifetimes and the
polarizabilities of the Rydberg molecules. Given our successful
characterization of s-wave boundRydberg states,we anticipate that
p-wave bound states9, trimer states10 and bound states involving
a Rydberg electron with large angular momentum—so-called
trilobite molecules5—will also be realized and directly probed in
the near future.

In 1934, Fermi introduced the ideas of scattering length and pseu-
dopotential to describe the scattering of a low-energy electron from a
neutral atom4. Although the polarization potential for electron–atom
interaction is always attractive, he realized that quantum mechanical
s-wave scattering can give rise to either a positive or a negative scatter-
ing lengthdepending on the relative phase between the ingoing and the
scattered electron waves. Taking this idea farther, Greene et al.5

predicted a novel molecular binding mechanism arising from a low-
energyRydberg electron scattering froman atomwith negative scatter-
ing length.

Fermi’s approach to characterizing the binding interaction that
arises from scattering of a Rydberg electron from a ground-state
atom requires that the binding energy (in frequency units) be smaller
than the Kepler frequency of the Rydberg electron, and that the size of
the electron wavefunction, / n2, be much larger than the range of
interaction, r (which in units of the Bohr radius (a0< 0.529 Å) is
given by r5

ffiffiffi
a

p
(ref. 11), where a is the polarizability of the

ground-state atom). Averaged over many scattering events and
weighted with the local electron density, jYn,l,mj2, the approach effec-
tively leads to a mean-field potential, VMF, between the scattering
partners. If R is the position of the ground-state atom relative to the
ionic core of the Rydberg atom, then the potential is given by

VMF(R)~2pa(k(R))jYn,l,m(R)j2 ð1Þ

and can, depending on the scattering length, a(k(R)), be repulsive
(a. 0) or attractive (a, 0)12. Evidence for these molecular potential
curves was found in theoretical work on alkali/rare-gas scattering13,14

as well as in spectroscopic data of rubidium at high temperatures,
where inhomogeneous line broadenings were observed for low prin-
cipal quantum numbers15.

In a semi-classical approximation, the scattering length is a func-
tion of the relative momentum, k(R), of the two scattering partners.
This k dependence can be expressed as

a(k)~aatomz
p

3
akzO(k2) ð2Þ

where aatom is the zero-energy scattering length12,16. The scattering
length depends on R because the momentum, k, of the Rydberg
electron changes with its position in the Coulomb potential of the
nucleus. Owing to the correspondence principle for large principal
quantum numbers, n, a reasonable ansatz for k(R) (where R5 jRj) is
the classical equation given in ref. 5:

k2(R)

2
~{

1

2n2
z

1

R
ð3Þ

Our focus in this study is on rubidium in its simplest Rydberg state, the
s state (angular quantum number, l5 0). Figure 1 shows the mean-
field potential given by equation (1) and the electron probability
density calculated for the 87Rb(35s) state. (The densities were calcu-
lated using Numerov’s method, including quantum defect correc-
tions17,18. Energy levels and wavefunctions of the molecular potential
were computed using a numerical solver19.) The molecular potential,

15. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany. 2University of Oklahoma, Homer L. Dodge Department of Physics and Astronomy,
Norman, Oklahoma 73072, USA.
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Figure 1 | Electron probability density and molecular potential for the 35s
state. The surface plot shows the spherically symmetric density distribution
of the Rydberg electron in theR–Q plane, (R/2p) |Y35,0,0(R) | 2. Themolecular
potential for the state 3S(5s–35s) (green) is modelled for a polarizability
a5 319 a.u. and a scattering length aRb5218.5a0. Not shown is the
repulsive part of the potential forR, 500a0 that results from a zero crossing
in the scattering length a(k(R)) at approximately 500a0. The potential
supports two vibrational bound states (wavefunctions given in blue) in the
outermost potential wells atR5 1,900a0 with binding energies (in frequency
units) of EB(v5 0)5223.4MHz and EB(v5 1)5210.6MHz.

Vol 458 |23 April 2009 |doi:10.1038/nature07945
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multipole forces to form Rydberg–Rydberg molecules with very
large internuclear distances1–3. Notably, bonding interactions can
also arise from the low-energy scattering of aRydberg electronwith
negative scattering length from a ground-state atom4,5. In this case,
the scattering-induced attractive interaction binds the ground-
state atom to the Rydberg atom at a well-localized position within
the Rydberg electron wavefunction and thereby yields giant mole-
cules that can have internuclear separations of several thousand
Bohr radii6–8. Here we report the spectroscopic characterization
of such exoticmolecular states formedby rubidiumRydberg atoms
that are in the spherically symmetric s state and have principal
quantum numbers, n, between 34 and 40. We find that the spectra
of the vibrational ground state and of the first excited state of the
Rydberg molecule, the rubidium dimer Rb(5s)–Rb(ns), agree well
with simple model predictions. The data allow us to extract the
s-wave scattering length for scattering between the Rydberg elec-
tron and the ground-state atom, Rb(5s), in the low-energy regime
(kinetic energy,,100meV), and to determine the lifetimes and the
polarizabilities of the Rydberg molecules. Given our successful
characterization of s-wave boundRydberg states,we anticipate that
p-wave bound states9, trimer states10 and bound states involving
a Rydberg electron with large angular momentum—so-called
trilobite molecules5—will also be realized and directly probed in
the near future.

In 1934, Fermi introduced the ideas of scattering length and pseu-
dopotential to describe the scattering of a low-energy electron from a
neutral atom4. Although the polarization potential for electron–atom
interaction is always attractive, he realized that quantum mechanical
s-wave scattering can give rise to either a positive or a negative scatter-
ing lengthdepending on the relative phase between the ingoing and the
scattered electron waves. Taking this idea farther, Greene et al.5

predicted a novel molecular binding mechanism arising from a low-
energyRydberg electron scattering froman atomwith negative scatter-
ing length.

Fermi’s approach to characterizing the binding interaction that
arises from scattering of a Rydberg electron from a ground-state
atom requires that the binding energy (in frequency units) be smaller
than the Kepler frequency of the Rydberg electron, and that the size of
the electron wavefunction, / n2, be much larger than the range of
interaction, r (which in units of the Bohr radius (a0< 0.529 Å) is
given by r5
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(ref. 11), where a is the polarizability of the

ground-state atom). Averaged over many scattering events and
weighted with the local electron density, jYn,l,mj2, the approach effec-
tively leads to a mean-field potential, VMF, between the scattering
partners. If R is the position of the ground-state atom relative to the
ionic core of the Rydberg atom, then the potential is given by

VMF(R)~2pa(k(R))jYn,l,m(R)j2 ð1Þ

and can, depending on the scattering length, a(k(R)), be repulsive
(a. 0) or attractive (a, 0)12. Evidence for these molecular potential
curves was found in theoretical work on alkali/rare-gas scattering13,14

as well as in spectroscopic data of rubidium at high temperatures,
where inhomogeneous line broadenings were observed for low prin-
cipal quantum numbers15.

In a semi-classical approximation, the scattering length is a func-
tion of the relative momentum, k(R), of the two scattering partners.
This k dependence can be expressed as

a(k)~aatomz
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akzO(k2) ð2Þ

where aatom is the zero-energy scattering length12,16. The scattering
length depends on R because the momentum, k, of the Rydberg
electron changes with its position in the Coulomb potential of the
nucleus. Owing to the correspondence principle for large principal
quantum numbers, n, a reasonable ansatz for k(R) (where R5 jRj) is
the classical equation given in ref. 5:
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Our focus in this study is on rubidium in its simplest Rydberg state, the
s state (angular quantum number, l5 0). Figure 1 shows the mean-
field potential given by equation (1) and the electron probability
density calculated for the 87Rb(35s) state. (The densities were calcu-
lated using Numerov’s method, including quantum defect correc-
tions17,18. Energy levels and wavefunctions of the molecular potential
were computed using a numerical solver19.) The molecular potential,
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En
er
gy

2π
Ψ

R

R
35,0,0

2

Figure 1 | Electron probability density and molecular potential for the 35s
state. The surface plot shows the spherically symmetric density distribution
of the Rydberg electron in theR–Q plane, (R/2p) |Y35,0,0(R) | 2. Themolecular
potential for the state 3S(5s–35s) (green) is modelled for a polarizability
a5 319 a.u. and a scattering length aRb5218.5a0. Not shown is the
repulsive part of the potential forR, 500a0 that results from a zero crossing
in the scattering length a(k(R)) at approximately 500a0. The potential
supports two vibrational bound states (wavefunctions given in blue) in the
outermost potential wells atR5 1,900a0 with binding energies (in frequency
units) of EB(v5 0)5223.4MHz and EB(v5 1)5210.6MHz.
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(a)

(b)

0

Figure 1. (a) 3! Born–Oppenheimer potential curves for states arising from both s-wave
and p-wave scattering. Several of the lowest vibrational levels, along with their associated
wavefunctions, are shown in the inset. The zero of the energy axis is taken to lie at the position of
the n = 30 manifold. (b) 3" Born–Oppenheimer potential curve arising from p-wave scattering.

The Born–Oppenheimer potential curves (both s- and p-waves) associated with
the ! molecular symmetry are shown in figure 1(a), and the curve for the " symmetry state
(possible for p-wave only) is shown in figure 1(b). The associated s- and p-wave phase shifts,
as functions of position, are shown in figure 2. Recall that the phase shifts at the perturber R

are implicit functions of R as a result of the change in the local kinetic energy of the scattered
electron. The most prominent qualitative features of the potentials are directly controlled by
the energy dependence of the phase shift. For example, the point at which the ! s-wave

L204 Letter to the Editor

Figure 3. A surface plot of the Rydberg electron probability density in cylindrical coordinates
for the n = 30 3! p-wave scattered (‘butterfly’) state. The perturber is located at the position of
the lowest minimum in the potential energy curve (at R = 308 au), and corresponds to the largest
peaks in electron density along the axis of symmetry.

lying levels, suggesting the possibility of resolving vibrational substructure in the absorption
spectrum.

Figure 3 contains a wavefunction of the ! p-wave scattered molecular state in the vicinity
of the minimum of the potential curve. Rather than being distributed over the entire classically
allowed region, the electron density is confined to an envelope with the approximate shape of
a butterfly. The nodal pattern features two large ‘wings’ of electron density extending to the
usual spatial boundary of the atomic Rydberg state, but along the internuclear axis the density
accumulates near the position of the perturber.

Like the trilobite states controlled by pure s-wave scattering [2], the p-wave ‘butterfly’
states develop large electric dipole moments, despite the fact that the electron density vanishes
at the perturber. The behaviour of the dipole moment at the equilibrium separation with n

scales roughly linearly with n, and its value for the n = 30 states is approximately 1.05 kD,
rising to 3.91 kD for n = 70. The " symmetry states have similarly large dipole moments,
but negative, with a value of −1.53 kD at n = 30. Such large permanent dipole moments can
be manipulated by external electromagnetic fields or by dipole–dipole interactions.

Previous studies have confirmed the utility of the zero-range pseudopotential method in
modelling a short-range physical potential [12,19]. To verify the accuracy of the extension of
this technique to p-wave scattering, we performed a full diagonalization on a two-dimensional
spline basis set using a nonlocal model pseudopotential with free parameters that could be
varied to reproduce the observed phase shifts. (See [25] for a recent example of the application
of this method.) As a further test, we also implemented the zero-range potential approximation
using a Green’s-function technique, as presented in [17]. A comparison of these three methods
is shown in figure 4. In each calculation, the overall shape of the p-wave bound state confirms
the validity of the extended Fermi model, with quantitative agreement within a few percent.
Note that for the sake of this comparison, the core quantum defects have been set to zero (i.e.,
an H + Rb system), allowing us to use the exact analytic Coulomb Green’s function.

These conclusions can be extended to molecular perturbers, through a generalized version
of the same zero-range potential [17]. The simplest such system, a diatomic molecular
perturber, introduces a second axis of symmetry into the problem, defining the orientation
of the molecule, with the result that states of differing molecular symmetry (i.e., projection

... a case of 
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no dipole... well!
large dipole

Wednesday, September 15, 2010



VOLUME 85, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 18 SEPTEMBER 2000

Members of the low-l class of molecular Rydberg
states, such as the 30dj states in Fig. 1(a), exhibit shallow
potential minima. The outermost potential well is approxi-
mately 120 MHz deep, and it supports approximately ten
vibrational bound levels, three of which are indicated on
the figure along with their radial wave functions. Attached
to each nd dissociation threshold are additional potential
curves that are not shown. Because these electronic states
are dominated by P or D character and vanish on the
internuclear axis, they remain unshifted from their atomic
energies in this Fermi s-wave approximation.

While this molecular state has no net electric dipole mo-
ment, it has a huge polarizability of order n7 a.u. Mod-
est laser power should produce these molecules in ample
numbers. Also, in a typical condensate, the rate of inelas-
tic transitions in the excited Rydberg level should be slow
compared to the vibrational frequency.

The n ! 30 potential curve of the perturbed hydrogenic
class is shown in Fig. 1(b), and its associated electronic
wave function is presented in Fig. 2. Its striking nodal
pattern is reminiscent of a trilobite. Interactions with the
perturbing atom split away just one such state from the
quasidegenerate manifold of high-l states [7–10], which
for Rb includes l $ lmin ! 3. Neglecting the small quan-
tum defects of all l $ 3 states, the lone perturbed adiabatic
potential curve is given in terms of radial hydrogenic wave

FIG. 2. A cylindrical coordinate surface plot of the electronic
probability density, 2prjc!r, z, 0"j2 and 2prjc!r, z, p"j2,
is displayed for the lowest Born-Oppenheimer state shown in
Fig. 1(b). This “trilobite-resembling” density corresponds to
the equilibrium internuclear distance R ! 1232 a.u. for this
n ! 30 3S perturbed hydrogenic state. The position of the
Rb!5s" atom is directly underneath the “twin towers” centered
at R ! 1232 toward the right side of the figure, while the Rb1

ion is represented (with exaggerated size) as a small white
sphere on the left. The region with appreciable density includes
z [ #2700, 1700$ and r [ #21200, 1200$.

functions Rnl!R" evaluated at the location of the Rb!5s"
perturber:

Un!R" ! 2
1

2n2 1 2pAT #k!R"$
n21X

l!lmin

2l 1 1
4p

Rnl!R"2.

(2)

This can be approximated [8] as Un!R" % 21&!2n2" 1
AT #k!R"$ #2&R 2 1&n2 2 !lmin 1 1

2 "2&R2$1&2&pn3.
The perturbed hydrogenic potential curves are approxi-

mately 2 orders of magnitude deeper than their low-l coun-
terparts at n ! 30. The low levels have roughly tenfold
higher vibrational frequencies. The n ! 30 potential curve
in Fig. 1(b) supports approximately 70 vibrational levels.
The potential curve depths decrease with n as ' 2 3.5 3
105 GHz&n3. Moreover, in contrast to the low-l class, the
sum over degenerate states now includes functions with
opposite electronic parities, which is why the electronic
wave function now peaks close to the perturbing atom.
This class of states has a large electric dipole moment,
D % R 2 1

2n2 a.u. as mentioned earlier; the equilibrium
value of R increases from 1232 a.u. at n ! 30 to about
3000 a.u. at n ! 70, roughly linearly with n. This trans-
lates into D ! 0.313 kdebye (782 a.u.) for the states of
Figs. 1(b) and 2.

Figure 3 proposes two different experiments to access
these unusual molecular Rydberg states. One-photon
excitation of an npj level could also be replaced by a
two-photon resonant or near-resonant process, to create a
molecular Rb!ndj" 1 Rb!5s" state of the type shown in
Fig. 1(a). The electric dipole selection rule requires more
photon steps to reach the degenerate hydrogenic (trilobite)
states composed of high l $ 3. Accordingly, the second
experiment might use a microwave photon to induce a
transition from a laser-excited nd state. Alternatively,
application of a weak electric field might circumvent the
dipole selection rule. Pulsed field ionization could be
used to detect the excited Rydberg states.

One important question is whether the Fermi model
can predict these Born-Oppenheimer potential curves
to adequate accuracy. Previous calculations suggest
that this is a reasonable assumption for the purposes of

5s + 5s

298 nm  

5s + 30p

5s + 5s

5s + 5p

787 nm

479.4 nm

5s + 30d

5s + 30fgh

∆

904µ

FIG. 3. Two experiments that could observe these different
classes of molecular Rydberg states. The left one depicts a direct
one-photon excitation of an npj molecular state. The scheme
on the right uses two photons to reach a high nd Rydberg state,
followed by an additional microwave step to reach a perturbed
hydrogenic state.
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the scattering-induced attractive interaction binds the ground-
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Rydberg molecule, the rubidium dimer Rb(5s)–Rb(ns), agree well
with simple model predictions. The data allow us to extract the
s-wave scattering length for scattering between the Rydberg elec-
tron and the ground-state atom, Rb(5s), in the low-energy regime
(kinetic energy,,100meV), and to determine the lifetimes and the
polarizabilities of the Rydberg molecules. Given our successful
characterization of s-wave boundRydberg states,we anticipate that
p-wave bound states9, trimer states10 and bound states involving
a Rydberg electron with large angular momentum—so-called
trilobite molecules5—will also be realized and directly probed in
the near future.

In 1934, Fermi introduced the ideas of scattering length and pseu-
dopotential to describe the scattering of a low-energy electron from a
neutral atom4. Although the polarization potential for electron–atom
interaction is always attractive, he realized that quantum mechanical
s-wave scattering can give rise to either a positive or a negative scatter-
ing lengthdepending on the relative phase between the ingoing and the
scattered electron waves. Taking this idea farther, Greene et al.5

predicted a novel molecular binding mechanism arising from a low-
energyRydberg electron scattering froman atomwith negative scatter-
ing length.

Fermi’s approach to characterizing the binding interaction that
arises from scattering of a Rydberg electron from a ground-state
atom requires that the binding energy (in frequency units) be smaller
than the Kepler frequency of the Rydberg electron, and that the size of
the electron wavefunction, / n2, be much larger than the range of
interaction, r (which in units of the Bohr radius (a0< 0.529 Å) is
given by r5

ffiffiffi
a

p
(ref. 11), where a is the polarizability of the

ground-state atom). Averaged over many scattering events and
weighted with the local electron density, jYn,l,mj2, the approach effec-
tively leads to a mean-field potential, VMF, between the scattering
partners. If R is the position of the ground-state atom relative to the
ionic core of the Rydberg atom, then the potential is given by

VMF(R)~2pa(k(R))jYn,l,m(R)j2 ð1Þ

and can, depending on the scattering length, a(k(R)), be repulsive
(a. 0) or attractive (a, 0)12. Evidence for these molecular potential
curves was found in theoretical work on alkali/rare-gas scattering13,14

as well as in spectroscopic data of rubidium at high temperatures,
where inhomogeneous line broadenings were observed for low prin-
cipal quantum numbers15.

In a semi-classical approximation, the scattering length is a func-
tion of the relative momentum, k(R), of the two scattering partners.
This k dependence can be expressed as

a(k)~aatomz
p

3
akzO(k2) ð2Þ

where aatom is the zero-energy scattering length12,16. The scattering
length depends on R because the momentum, k, of the Rydberg
electron changes with its position in the Coulomb potential of the
nucleus. Owing to the correspondence principle for large principal
quantum numbers, n, a reasonable ansatz for k(R) (where R5 jRj) is
the classical equation given in ref. 5:

k2(R)

2
~{

1

2n2
z

1

R
ð3Þ

Our focus in this study is on rubidium in its simplest Rydberg state, the
s state (angular quantum number, l5 0). Figure 1 shows the mean-
field potential given by equation (1) and the electron probability
density calculated for the 87Rb(35s) state. (The densities were calcu-
lated using Numerov’s method, including quantum defect correc-
tions17,18. Energy levels and wavefunctions of the molecular potential
were computed using a numerical solver19.) The molecular potential,

15. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany. 2University of Oklahoma, Homer L. Dodge Department of Physics and Astronomy,
Norman, Oklahoma 73072, USA.
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Figure 1 | Electron probability density and molecular potential for the 35s
state. The surface plot shows the spherically symmetric density distribution
of the Rydberg electron in theR–Q plane, (R/2p) |Y35,0,0(R) | 2. Themolecular
potential for the state 3S(5s–35s) (green) is modelled for a polarizability
a5 319 a.u. and a scattering length aRb5218.5a0. Not shown is the
repulsive part of the potential forR, 500a0 that results from a zero crossing
in the scattering length a(k(R)) at approximately 500a0. The potential
supports two vibrational bound states (wavefunctions given in blue) in the
outermost potential wells atR5 1,900a0 with binding energies (in frequency
units) of EB(v5 0)5223.4MHz and EB(v5 1)5210.6MHz.
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(a)

(b)

0

Figure 1. (a) 3! Born–Oppenheimer potential curves for states arising from both s-wave
and p-wave scattering. Several of the lowest vibrational levels, along with their associated
wavefunctions, are shown in the inset. The zero of the energy axis is taken to lie at the position of
the n = 30 manifold. (b) 3" Born–Oppenheimer potential curve arising from p-wave scattering.

The Born–Oppenheimer potential curves (both s- and p-waves) associated with
the ! molecular symmetry are shown in figure 1(a), and the curve for the " symmetry state
(possible for p-wave only) is shown in figure 1(b). The associated s- and p-wave phase shifts,
as functions of position, are shown in figure 2. Recall that the phase shifts at the perturber R

are implicit functions of R as a result of the change in the local kinetic energy of the scattered
electron. The most prominent qualitative features of the potentials are directly controlled by
the energy dependence of the phase shift. For example, the point at which the ! s-wave
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Figure 3. A surface plot of the Rydberg electron probability density in cylindrical coordinates
for the n = 30 3! p-wave scattered (‘butterfly’) state. The perturber is located at the position of
the lowest minimum in the potential energy curve (at R = 308 au), and corresponds to the largest
peaks in electron density along the axis of symmetry.

lying levels, suggesting the possibility of resolving vibrational substructure in the absorption
spectrum.

Figure 3 contains a wavefunction of the ! p-wave scattered molecular state in the vicinity
of the minimum of the potential curve. Rather than being distributed over the entire classically
allowed region, the electron density is confined to an envelope with the approximate shape of
a butterfly. The nodal pattern features two large ‘wings’ of electron density extending to the
usual spatial boundary of the atomic Rydberg state, but along the internuclear axis the density
accumulates near the position of the perturber.

Like the trilobite states controlled by pure s-wave scattering [2], the p-wave ‘butterfly’
states develop large electric dipole moments, despite the fact that the electron density vanishes
at the perturber. The behaviour of the dipole moment at the equilibrium separation with n

scales roughly linearly with n, and its value for the n = 30 states is approximately 1.05 kD,
rising to 3.91 kD for n = 70. The " symmetry states have similarly large dipole moments,
but negative, with a value of −1.53 kD at n = 30. Such large permanent dipole moments can
be manipulated by external electromagnetic fields or by dipole–dipole interactions.

Previous studies have confirmed the utility of the zero-range pseudopotential method in
modelling a short-range physical potential [12,19]. To verify the accuracy of the extension of
this technique to p-wave scattering, we performed a full diagonalization on a two-dimensional
spline basis set using a nonlocal model pseudopotential with free parameters that could be
varied to reproduce the observed phase shifts. (See [25] for a recent example of the application
of this method.) As a further test, we also implemented the zero-range potential approximation
using a Green’s-function technique, as presented in [17]. A comparison of these three methods
is shown in figure 4. In each calculation, the overall shape of the p-wave bound state confirms
the validity of the extended Fermi model, with quantitative agreement within a few percent.
Note that for the sake of this comparison, the core quantum defects have been set to zero (i.e.,
an H + Rb system), allowing us to use the exact analytic Coulomb Green’s function.

These conclusions can be extended to molecular perturbers, through a generalized version
of the same zero-range potential [17]. The simplest such system, a diatomic molecular
perturber, introduces a second axis of symmetry into the problem, defining the orientation
of the molecule, with the result that states of differing molecular symmetry (i.e., projection
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long-lived molecular state presents an intriguing opportu-
nity for manipulation and control through the application
of an electric field or field gradient.

Throughout the present Letter, we adopt Rb2 as our
prototype Rydberg molecule and demonstrate potential
curves for states like Rb!ndj" 1 Rb!5s" that display mul-
tiple minima at very large internuclear separations. The
existence of these oscillatory extrema in such potential
curves can be understood most simply through the use
of a Fermi-type pseudopotential [8,11] to characterize
the interaction between the atomic Rydberg electron and
a ground state Rb(5s) atom. If !r is the position of the
Rydberg electron relative to a Rb1 ground state ion,
and !R is the position of the Rb(5s) atom relative to the
ion, then the interaction potential can be taken, in a first
approximation, as

V !!r , !R" " 2pAT #k!R"$d!!r 2 !R" . (1)

Here AT #k$ % 2 tandT
0 !k"&k is the energy-dependent

triplet s-wave scattering length for electron collisions
with ground state Rb(5s) atoms, defined in terms of the
triplet s-wave phase shift dT

0 !k". The relevant electron
wave number k!R" is defined by the kinetic energy of
the Rydberg electron at energy ´ " 21&2n2 when it
collides with a perturbing atom at a distance R from the
Rb1 ion, namely, 1

2k2!R" " ´ 1 1&R. The accuracy of
diatomic potential curves obtained within the Fermi model
is improved [7,9,10] if an energy-dependent (and hence
R-dependent) scattering length is adopted. We use the
zero-energy scattering length AT #0$ " 216.05 calculated
by Bahrim et al. [12].

The negative value of the triplet scattering length im-
plies that states of predominantly triplet character might be
sufficiently attractive to produce bound vibrational states
relative to the atomic dissociation threshold. Accordingly,
we consider in this Letter only states that are controlled by
the triplet scattering length. (The singlet value of Ref. [12]
is AS " 0.627, but it will not play a role in the calcula-
tions discussed here.) The energy dependence of AT #k$ has
been determined from AT #0$ and the Rb(5s) polarizability,
a5s " 319.2 [13], using a generalized quantum defect the-
ory [14], which is applicable over the entire relevant energy
range.

When spin-orbit interactions can be neglected, the in-
teresting 3Sg and 3Su Born-Oppenheimer potential curves
for Rb!nd" 1 Rb!5s" are both given in the Fermi model
[11] by U!R" " End 1 2pAT #k!R"$ jcnd0! !R"j2. This ex-
pression in terms of the unperturbed atomic Rydberg state
wave function cnd0 results in highly oscillatory Born-
Oppenheimer potential curves. Previous studies [7,9,10]
showed that the Fermi pseudopotential description can
largely reproduce the results of extensive ab initio cal-
culations of diatomic potential curves, which adds to our
confidence in this approach. A recent accurate ab initio

calculation of LiH, LiHe, and LiNe potential curves has
confirmed the existence of similar oscillations associated
with atomic orbital undulations [15]. These oscillations
are also seen in recent NaH calculations [16].

Figure 1(a) shows typical adiabatic potential curves
associated with the low-l class for Rb2 states of V " 1
symmetry in the vicinity of the 30dj 1 5s dissociation
thresholds. Here V denotes the projection of the total
electronic orbital plus spin angular momentum onto the
internuclear axis. These molecular Rydberg states are
best characterized in Hund’s case (c), because the atomic
spin-orbit splitting is larger than the electron-perturber
interaction. While the oscillatory potential curves do
track the radial Rydberg wave function, a surprising
feature is the vanishing of the perturbation shift near
R " 450 a.u. In fact, this vanishing corresponds to the
Ramsauer-Townsend zero of the 3S e2-Rb(5s) phase shift
at 0.042 eV (see, e.g., Fig. 4 of Ref. [12]).

(a)

(b)

FIG. 1. (a) Typical Born-Oppenheimer potential curve for the
low-l class of molecular Rydberg states. The potential curve
shown is predicted for the Rb2 V " 1 molecular states formed
from the 30dj"3&2 1 5s states of the separated atoms and has
predominantly triplet spin character. The lowest vibrational
levels and their corresponding vibrational wave functions are
also indicated. (b) 3S Rb2 potential curves for the n " 30 per-
turbed hydrogenic class of molecular Rydberg states. Several
of the lowest vibrational levels are depicted in the inset. The
zero of the energy scale in (b) is taken to be the energy of the
degenerate hydrogenic manifold for n " 30.
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... Of dipole scattering and bound states 

Exponential convergence of bound states 

!!!"
2 + 2#vv cos ! + $%

m"$%
m + 1#$Z%

m"!,"# = 0,

% = m,m + 1, . . . , "3#

Z%
m"!,"# = D%

m"cos !#eim", "4#

where !!"
2 is the angular part of the Laplace operator and #vv

is the dipole moment for a given vibrational state v. Then the
amplitude for vibrational transition from v state to v! state is

fvv!"&0,&# = −
2i#vv!

q
cos '

−
i

"kk!#1/2Svv!D0
0"− cos &0#D0

0"cos &# , "5#

where &0 and & are incident and scattering angles relative to
the molecular axis, k and k! are initial and final electron
momenta, q=k!−k, ' is the angle between q and the mo-
lecular axis, #vv! is the matrix element of the dipole moment,
and Svv! is the S-matrix element for the resonance vibrational
excitation. The first term in Eq. "5# represents the direct ex-
citation in the Born approximation !40$ and the second the
resonance contribution !41$. Since we will be mostly inter-
ested in the transition v→v+1, we neglect the difference in
the diagonal dipole moment in initial and final state, and
assume that the dipolar harmonic D0

0 is the same for both
states.

Taking the square of the absolute value of the amplitude
and averaging over orientations, we obtain for the differen-
tial cross section as a function of the scattering angle !

("!# =
k!
k

!Adir"!# + Ares"!# + Aint"!#$ , "6#

where Adir"!#=4#vv!
2 /3q2"!# !40$. The method of calculation

of the resonance contribution Ares was described elsewhere
!41$. Here we will concentrate on the interference term Aint,

Aint =
4#vv! Re Svv!

q"kk!#1/2 %cos 'D0
0"− cos &0#D0

0"cos &#& , "7#

where angular brackets mean the average over orientations.
To calculate the average, we write

cos ' =
k! · ŝ − k · ŝ

q
, "8#

where ŝ is a unit vector in the direction of the molecular axis.
Then we expand D0

0"cos &# in Legendre polynomials and use
the addition theorem for spherical harmonics:

D0
0"cos &# = '

l
(2l + 1

2
)1/2

alPl"cos &#

= 2)'
lm
( 2

2l + 1
)1/2

alYlm
* "k̂#Ylm"ŝ# , "9#

where we have performed transformation to the frame with
the polar axis along the vector k. The expansion coefficients
al can be easily obtained by the diagonalization of Eq. "3#.
Using a similar expansion for D0

0"−cos &0# and integrating
over ŝ, we obtain

%cos 'D0
0"− cos &0#D0

0"cos &#& =
k + k!

q '
l

plPl"cos !# ,

"10#

pl =
al"− 1#l

"2l + 1#1/2* l + 1
"2l + 3#1/2al+1 +

l

"2l − 1#1/2al−1+ . "11#

Now the interference term can be written as

Aint"!# =
2#vv!

q2"kk!#1/2 "k + k!#Re Svv!'
l

plPl"cos !# . "12#

The interference term integrated over scattering angle can be
obtained using the equation

,
−1

1 Pl"x#
k2 + "k!#2 − 2kk!x

dx =
1

kk!
Ql( k2 + "k!#2

2kk!
) , "13#

where Ql"x# is the Legendre function of the second kind.
Finally the integrated cross section is

(vv! =
)

k2- 8#vv!
2

3
ln

k + k!

.k − k!.
+ .Svv!.

2

+ 4#vv!
k + k!

"kk!#1/2 Re Svv!'
l

plQl( k2 + "k!#2

2kk!
)/ .

"14#

Note that the phase factor in #vv! should be consistent with
the phase factor in Svv!, since the sign of the interference
term is determined by the product #vv!Re Svv!.

C. Differential elastic cross section

It is well known that resonant features in elastic electron
scattering by polar molecules can be significantly suppressed

FIG. 2. DEA to vibrationally excited states of CH3Br. Solid
lines: calculation with the dipole function from the MCVB calcula-
tions. Dashed lines: calculation with the model dipole function.

RESONANCES AND THRESHOLD EFFECTS IN LOW-… PHYSICAL REVIEW A 75, 032719 "2007#

032719-3

Dissociative electron 
attachment to CH3Br 

(Gallup + Fabrikant 2007)
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step in the hyperspherical approach is to single out a special
collective coordinate of the system, namely, the hyperradius
R = (∑i miri

2/M)1/2. Here ri is the distance between the center of
mass and particle i having mass mi , and M is a convenient
normalizing mass. The square of the hyperradius is propor-
tional to the trace of the system’s moment-of-inertia tensor.

The essence of the method is to treat R as a parameter,
solve the fixed-R Schrödinger equation, and regard the eigen-
values Uυ(R) as adiabatic potential curves in the same spirit
as in the familiar Born–Oppenheimer approximation that has
produced so many insights in molecular physics. (In the
Born–Oppenheimer case, it is the nuclear positions that are
the originally fixed coordinates.) When the relevant nonadi-
abatic coupling matrices are included, the many-particle par-
tial differential equations reduce to a conceptually simpler
set of coupled ordinary differential equations in one dimen-
sion. Moreover, inspection of the potential curves immedi-
ately shows the loci of avoided crossings where adiabaticity
fails; those, in turn, indicate the energies and hyperradii at
which the system can transition from a channel described by
a given potential curve to a channel corresponding to a dif-
ferent curve. (In scattering theory, a channel refers to all of
the quantum numbers that identify entrance or exit products
from a collision.) 

Efimov’s groundbreaking work explored the three-body
system with short-range forces in the limit of a large hyper-
radius. Under those conditions, his dipole-type R−2 potential
produced the infinite spectrum of energy levels already men-
tioned. As the binding energies geometrically converge to
zero, the mean hyperradii expand, and by a related exponen-
tial factor: 〈R〉n = 〈R〉n−1 exp(π/s0).

Three’s a crowd
One key link, developed in the interim between Efimov’s
early predictions and ultracold-gas experiments conducted

within the past few years, connected his effect with the
process of three-body recombination,5 A + A + A → A2 + A.
That reaction dominates atom losses in most degenerate
quantum gases, but, as I will describe later, under some cir-
cumstances four-body processes can also contribute signifi-
cantly. In general, the atom density n in a homogeneous ther-
mal gas cloud is controlled by inelastic collision events
through the rate equation dn/dt = −L2n2 − L3n3 − L4n4, where t
is time, and LN is the appropriately averaged inelastic loss rate
associated with collisions of N bodies. In most gases studied
nowadays, experimental design minimizes two-body losses.
The usual result that the three-body term dominates loss can
then be expressed as L3 > nL4.

An understanding of the link between three-body re-
combination and universal physics began to emerge a decade
ago from quantitative theory and now seems to be on solid
footing.5 In particular, theoretical studies showed that by tun-
ing the atom–atom scattering length a to an appropriate, large
negative value, ai

3b, experimentalists should observe a strong
resonance in the three-body recombination rate. (The table on
page 40 reviews the notation for all the special scattering-
length values considered in this article.) Theoretical work
also predicted something of far greater potential interest for
quantum-gas experimenters: a series of recombination-rate
minima occurring at successive scattering lengths ai

3b,min. At
those values, losses in condensates or in cooling stages are
minimal. Moreover, the ratio of successive scattering lengths
corresponding to the minima is given by the Efimov factor
exp(π/s0) = 22.7.

Figure 1 depicts the current understanding of the reso-
nances and minima in the adiabatic hyperspherical picture.
At large negative scattering lengths, the three-body entrance
channel shows a barrier at long range (Fano called it a “mock
centrifugal barrier”) and, at short range, an attractive well
that can trap a three-body shape resonance (that is, a quasi-
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b Figure 1. Low-energy
recombination of
bosonic cesium. (a) The
numerically calculated
recombination rate for
Cs + Cs + Cs→ Cs2 + Cs
plotted as a function of
the Cs–Cs scattering
length a measured in
Bohr radii. Clearly visi-
ble at a negative scat-
tering length is the first
Efimov resonance and,
at a = a1

3b,min > 0, the first
destructive interference
minimum. The qualita-
tively different phenom-
ena at large positive
and negative a follow
from the qualitatively

different nature of the reaction pathways in those regimes. (b) For negative a, a system with a small positive energy E (blue line)
must tunnel over a barrier into the red potential well located at hyperradius R≪ ∣a∣. When the scattering length admits a quasi-
bound resonance beyond the barrier (horizontal red line), the tunneling rate is enhanced and the system can relax efficiently (blue
arrow) to the two-body channel represented by the black potential curve. (c) For positive a, two distinct paths allow the system to
transition to the two-body state at R ≈ a. In one path (yellow arrows), the system bounces off the red potential barrier and relaxes to
the two-body channel while R is increasing. In the second pathway (blue arrows), the system transitions to the two-body channel
while R is decreasing, and then the system rebounds off the black potential barrier. If the scattering length is tuned appropriately,
the two paths destructively interfere. (Adapted from ref. 18.)
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bound resonance) having the character of an Efimov state.
When the scattering length is tuned so that the shape-
 resonance energy (red line in figure 1b) lies close to the col-
lision energy (blue line), which is itself within tens of
nanokelvin of zero, tunneling through the barrier is strongly
enhanced and recombination can occur efficiently into
deeper two-body bound-state channels. On the other hand,
when the scattering length is large and positive, as in figure
1c, no potential barrier exists at asymptotic values of R, nor
does the potential include an inner well that could support
shape resonances. Instead, there is an avoided crossing of the
three-body entrance-channel potential curve with a potential
curve (black) whose asymptotic energy E = −ħ2/ma2 is that of
the highest-energy S-wave two-body bound state. Those fea-
tures are independent of the details of the particular system
of three identical bosons with short-range interactions and
hold more generally with some modifications in detail. 

The smoking gun
Before the Efimov effect was observed experimentally, a
number of independent and varied theoretical treatments
confirmed and extended the predictions discussed above.
Those studies certainly added significant confidence in
physicists’ growing understanding of universal phenomena
at large scattering length. Nevertheless, experimental evi-
dence was lacking until the breakthrough published in 2006
by Rudolf Grimm’s group in Innsbruck, Austria6 (see PHYSICS
TODAY, April 2006, page 18). Since then numerous groups
have observed clear-cut manifestations of universal physics
through the study of three-body recombination in ultracold
homonuclear and heteronuclear gases.7–10

The clearest evidence for universality in a system of
three low-energy bosons would be the observation of succes-
sive bound or resonant states separated by the Efimov factor
exp(−2π/s0) in energy or by exp(π/s0) in scattering length. The
first experimental evidence by the Innsbruck group in 2006
saw only one universal resonance, and the researchers’ inter-
pretation of the resonance as a reflection of Efimov’s discov-
eries relied on theoretical treatments. But in 2009 several ex-
periments managed to obtain completely convincing and
unambiguous evidence—smoking guns of universal physics.

At least three serious problems hamper experimental
studies of the universal regime of three-body interactions.
First, in order to see strong evidence of the predicted scaling
in energy and scattering length, an experiment must be able
to treat a range of scattering lengths over a factor of at least
22.7, and more likely (22.7)2 or even (22.7)3. Second, the tem-
perature must be extremely low—typically kBT ≲ ħ2/ma2—if
delicate resonance and minimum features are to be visible
at large-magnitude scattering lengths. Third, three-body re-
combination rates scale overall as a4. Thus, as an experimen-
tal group varies the scattering length over a factor of 500 or
more, the dynamic range of loss rates to which its experi-
ment must be sensitive could easily cover 8–10 orders of
magnitude. 

Overcoming those difficulties is no small feat, but exper-
iments worldwide rose to the task in 2009. Italian and Israeli
teams produced clear evidence of three-body and four-body
universality,8 and most recently, Randall Hulet’s group at Rice
University measured atom losses in a dilute gas over a re-
markable dynamic range, conclusively demonstrating sev-
eral aspects of universality.10 Specifically, as shown in figure 2,
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Figure 2. Universality in a gas of bosonic lithium-7.Shown here is an experimental loss spectrum as a function of the atom–
atom scattering length a measured in Bohr radii. The thick, solid black curve is a fit to the analytic three-body recombination
theory developed by Eric Braaten and Hans-Werner Hammer;5 the expected overall a4 scaling is indicated by the thinner gray
curve. Green curves show the theoretically derived energies (in arbitrary units) of the first and second Efimov levels. Visible in
the positive-a region to the left are two out of the predicted infinite number of recombination-loss minima. Their scattering
lengths, a1

3b,min at 119 Bohr radii and a2
3b,min at 2676 Bohr radii, have a ratio of 22.5, which is within experimental error of the pre-

dicted universal value of 22.7. At negative scattering lengths, the two evident three-body loss maxima are at a1
3b = −298 Bohr

radii and a2
3b = −6301 Bohr radii. Their ratio of 21.1 is again consistent with the predicted ratio of 22.7. Also visible is a resonant

loss feature attributed to four-body recombination, at a1,1
4b = −120 Bohr radii. The ratio of that scattering length to the length cor-

responding to the nearby three-body resonance, a1,1
4b/a1

3b = 0.40, is in agreement with predictions from universal four-body re-
combination theory.13 The remaining scattering lengths indicated in the figure are defined in the table on page 40. (Adapted
from ref. 10.)
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FIG. 3: (color online) The recombination rate constant pre-
dicted from Eq. (2) is shown for fixed η (dashed curve) and
for energy dependent η (solid curve) as a function of mag-
netic field compared to experimental data from Ref. [1] (red
circles) and Ref. [2] (blue squares).

By assuming that any non-adiabatic transition results
in a three-body recombination event and the system must
pass twice through the transition, on the way in and on
the way out, the probability of remaining in the initial
channel can be determined:

|Ψout|2

|Ψin|2
= (1− Pna)2 . (8)

Comparing Eqs. (6) and (8) gives a simple equation that
can be solved for η:

η =
1
2

ln
[

1
1− exp (−β∆)

]
, (9)

β =
π

!v

1
4Pmax

.

With this formula, the unknown short-range dependence
of η is encompassed in a single parameter β which is
independent of the binding energy ∆. It is important to
note that we have not increased the number of fitting pa-
rameters, we have merely shifted the fitting to the atom
dependent parameter β instead of η. In cases where the
final state energy does not strongly depend on the mag-
netic field, this extra dependence is not needed and η can
be used directly. However in cases where the final state
has a strong field dependence, such as 6Li, the proposed
parametrization of η is more appropriate. In general a
smaller binding energy leads to a larger loss parameter in
Eq. (9), and a larger loss parameter leads to a broader
resonance. Qualitatively, while the binding energy de-
pendence in Eq. (6) is similar to the 1/∆ dependence
assumed in Ref. [20], the detailed behavior is consider-
ably different.

Figure (3) shows the recombination rates predicted
from Eq. (2) in the threshold regime (incident energy

E = 10−12 a. u.) compared to the experimental results
of Ottenstein et al. [1] (red circles) and Huckans et al. [2]
(blue squares). The dashed curve is found by assuming
that η is completely independent of the magnetic field
strength. The solid curve is found by using Eq. (9) with
the lowest dimer binding energy from Fig. (1b). Any
one of these four binding energies could have been used
(with appropriate modifications to β), but because they
all have similar magnetic field dependence, the results are
nearly identical. The fits were found by setting r0 = 22
a.u. such that the the first resonance occurs at 130 G.
The dashed curve was found by setting η = 0.05 to fit the
width of the first resonance at B = 130 G using the data
from Ref. [2]. The solid curve was found by choosing β
so that η = exp (−β∆) = 0.05 at the same B. Both of
the predictions in Fig. (3) do an excellent job of describ-
ing the first resonance, while using the ∆ dependent loss
parameter from Eq. (9) is in astonishingly good agree-
ment with Huckans et al. [2] and fairly good agreement
with Ottenstein et al. [1].

The initial hyperradial potential used here was derived
assuming that all scattering lengths were much larger
than any short range parameters. The hyperradial po-
tential used in Eqs. (3) and (4) were found by assuming
zero range interactions, which is appropriate for scatter-
ing lengths much greater than the size of the two-body in-
teraction. In the case of 6Li, this size is given by approx-
imately the Van der Waals length r6 ≈ 30 a.u. Because
the smallest scattering length is not too much larger than
this, we might expect small corrections to this due to
non-universal behavior in the potentials. Even with this
caveat, the qualitative agreement seen in Fig. (3) is re-
markable.

While the treatment above does give good agreement
with experimental data, it not necessarily convenient for
quick comparison to experiment. Examining the three
scattering lengths from Fig. (1a) shows that they dif-
fer by a factor of roughly 2 throughout the region in
which the experimental data is taken. With this, we as-
sume that they are different enough to use the results
of Ref. [24] which gives the incoming three-body hyper-
radial potential for three distinguishable particles with
large s-wave scattering lengths in four regions:

Vi (R) =



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−s2
1 − 1/4
R2

, |as|# R# |am|
!2

2µ

−s2
0 − 1/4
R2

, r0 # R# |as|

. (10)

Here al, am and as are respectively the largest, second
largest and smallest scattering lengths in magnitude, and
s0 = 1.006 and s1 = 0.414 are parameters which are de-
termined by the universal potential in the limits where
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bound resonance) having the character of an Efimov state.
When the scattering length is tuned so that the shape-
 resonance energy (red line in figure 1b) lies close to the col-
lision energy (blue line), which is itself within tens of
nanokelvin of zero, tunneling through the barrier is strongly
enhanced and recombination can occur efficiently into
deeper two-body bound-state channels. On the other hand,
when the scattering length is large and positive, as in figure
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three-body entrance-channel potential curve with a potential
curve (black) whose asymptotic energy E = −ħ2/ma2 is that of
the highest-energy S-wave two-body bound state. Those fea-
tures are independent of the details of the particular system
of three identical bosons with short-range interactions and
hold more generally with some modifications in detail. 

The smoking gun
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by Rudolf Grimm’s group in Innsbruck, Austria6 (see PHYSICS
TODAY, April 2006, page 18). Since then numerous groups
have observed clear-cut manifestations of universal physics
through the study of three-body recombination in ultracold
homonuclear and heteronuclear gases.7–10

The clearest evidence for universality in a system of
three low-energy bosons would be the observation of succes-
sive bound or resonant states separated by the Efimov factor
exp(−2π/s0) in energy or by exp(π/s0) in scattering length. The
first experimental evidence by the Innsbruck group in 2006
saw only one universal resonance, and the researchers’ inter-
pretation of the resonance as a reflection of Efimov’s discov-
eries relied on theoretical treatments. But in 2009 several ex-
periments managed to obtain completely convincing and
unambiguous evidence—smoking guns of universal physics.

At least three serious problems hamper experimental
studies of the universal regime of three-body interactions.
First, in order to see strong evidence of the predicted scaling
in energy and scattering length, an experiment must be able
to treat a range of scattering lengths over a factor of at least
22.7, and more likely (22.7)2 or even (22.7)3. Second, the tem-
perature must be extremely low—typically kBT ≲ ħ2/ma2—if
delicate resonance and minimum features are to be visible
at large-magnitude scattering lengths. Third, three-body re-
combination rates scale overall as a4. Thus, as an experimen-
tal group varies the scattering length over a factor of 500 or
more, the dynamic range of loss rates to which its experi-
ment must be sensitive could easily cover 8–10 orders of
magnitude. 

Overcoming those difficulties is no small feat, but exper-
iments worldwide rose to the task in 2009. Italian and Israeli
teams produced clear evidence of three-body and four-body
universality,8 and most recently, Randall Hulet’s group at Rice
University measured atom losses in a dilute gas over a re-
markable dynamic range, conclusively demonstrating sev-
eral aspects of universality.10 Specifically, as shown in figure 2,
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Figure 2. Universality in a gas of bosonic lithium-7.Shown here is an experimental loss spectrum as a function of the atom–
atom scattering length a measured in Bohr radii. The thick, solid black curve is a fit to the analytic three-body recombination
theory developed by Eric Braaten and Hans-Werner Hammer;5 the expected overall a4 scaling is indicated by the thinner gray
curve. Green curves show the theoretically derived energies (in arbitrary units) of the first and second Efimov levels. Visible in
the positive-a region to the left are two out of the predicted infinite number of recombination-loss minima. Their scattering
lengths, a1

3b,min at 119 Bohr radii and a2
3b,min at 2676 Bohr radii, have a ratio of 22.5, which is within experimental error of the pre-

dicted universal value of 22.7. At negative scattering lengths, the two evident three-body loss maxima are at a1
3b = −298 Bohr

radii and a2
3b = −6301 Bohr radii. Their ratio of 21.1 is again consistent with the predicted ratio of 22.7. Also visible is a resonant

loss feature attributed to four-body recombination, at a1,1
4b = −120 Bohr radii. The ratio of that scattering length to the length cor-

responding to the nearby three-body resonance, a1,1
4b/a1

3b = 0.40, is in agreement with predictions from universal four-body re-
combination theory.13 The remaining scattering lengths indicated in the figure are defined in the table on page 40. (Adapted
from ref. 10.)
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FIG. 3: (color online) The recombination rate constant pre-
dicted from Eq. (2) is shown for fixed η (dashed curve) and
for energy dependent η (solid curve) as a function of mag-
netic field compared to experimental data from Ref. [1] (red
circles) and Ref. [2] (blue squares).

By assuming that any non-adiabatic transition results
in a three-body recombination event and the system must
pass twice through the transition, on the way in and on
the way out, the probability of remaining in the initial
channel can be determined:

|Ψout|2

|Ψin|2
= (1− Pna)2 . (8)

Comparing Eqs. (6) and (8) gives a simple equation that
can be solved for η:

η =
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With this formula, the unknown short-range dependence
of η is encompassed in a single parameter β which is
independent of the binding energy ∆. It is important to
note that we have not increased the number of fitting pa-
rameters, we have merely shifted the fitting to the atom
dependent parameter β instead of η. In cases where the
final state energy does not strongly depend on the mag-
netic field, this extra dependence is not needed and η can
be used directly. However in cases where the final state
has a strong field dependence, such as 6Li, the proposed
parametrization of η is more appropriate. In general a
smaller binding energy leads to a larger loss parameter in
Eq. (9), and a larger loss parameter leads to a broader
resonance. Qualitatively, while the binding energy de-
pendence in Eq. (6) is similar to the 1/∆ dependence
assumed in Ref. [20], the detailed behavior is consider-
ably different.

Figure (3) shows the recombination rates predicted
from Eq. (2) in the threshold regime (incident energy

E = 10−12 a. u.) compared to the experimental results
of Ottenstein et al. [1] (red circles) and Huckans et al. [2]
(blue squares). The dashed curve is found by assuming
that η is completely independent of the magnetic field
strength. The solid curve is found by using Eq. (9) with
the lowest dimer binding energy from Fig. (1b). Any
one of these four binding energies could have been used
(with appropriate modifications to β), but because they
all have similar magnetic field dependence, the results are
nearly identical. The fits were found by setting r0 = 22
a.u. such that the the first resonance occurs at 130 G.
The dashed curve was found by setting η = 0.05 to fit the
width of the first resonance at B = 130 G using the data
from Ref. [2]. The solid curve was found by choosing β
so that η = exp (−β∆) = 0.05 at the same B. Both of
the predictions in Fig. (3) do an excellent job of describ-
ing the first resonance, while using the ∆ dependent loss
parameter from Eq. (9) is in astonishingly good agree-
ment with Huckans et al. [2] and fairly good agreement
with Ottenstein et al. [1].

The initial hyperradial potential used here was derived
assuming that all scattering lengths were much larger
than any short range parameters. The hyperradial po-
tential used in Eqs. (3) and (4) were found by assuming
zero range interactions, which is appropriate for scatter-
ing lengths much greater than the size of the two-body in-
teraction. In the case of 6Li, this size is given by approx-
imately the Van der Waals length r6 ≈ 30 a.u. Because
the smallest scattering length is not too much larger than
this, we might expect small corrections to this due to
non-universal behavior in the potentials. Even with this
caveat, the qualitative agreement seen in Fig. (3) is re-
markable.

While the treatment above does give good agreement
with experimental data, it not necessarily convenient for
quick comparison to experiment. Examining the three
scattering lengths from Fig. (1a) shows that they dif-
fer by a factor of roughly 2 throughout the region in
which the experimental data is taken. With this, we as-
sume that they are different enough to use the results
of Ref. [24] which gives the incoming three-body hyper-
radial potential for three distinguishable particles with
large s-wave scattering lengths in four regions:

Vi (R) =
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Here al, am and as are respectively the largest, second
largest and smallest scattering lengths in magnitude, and
s0 = 1.006 and s1 = 0.414 are parameters which are de-
termined by the universal potential in the limits where
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the two molecular parity states, giving rise to a total molecular Hamiltonian

Hλ
mol =

(
∆ d0F λ

tot(R)
d0F λ

tot(R) 0

)
(8)

whose eigenvalues Vλ(R) define the Born-Oppenheimer potentials for the interaction of a Rydberg
atom with a polar molecule of dipole d0:

Vλ (R) = d0



Fc ±

√(
F λ
e (R)− 1

R2

)2

+ F 2
c



 . (9)

In the following, we are mainly interested in the “−” solution.

Alternative construction of the 2x2 matrix

An alternative to Hamiltonian (8) can be derived by following the theory of polar Λ-doublet
molecules in electric fields as reviewed by John Bohn in Chapter 2 of Ref. [2].2 In this reference a
nice qualitative explanation of the Λ-doubling is given: “As we have made clear in the previous two
sections, the effect of an electric field on a quantum mechanical object is to couple states of opposite
parity. For a molecule in a Π or ∆ state, there are often two such parity states that are much closer
together in energy than the rotational spacing. The two states are said to be the components of a
Λ-doublet. In broad terms, the argument is something like this: a Π state has an electronic angular
momentum projection of magnitude 1 about the molecular axis. This angular momentum comes in
two projections, for the two sense of rotation about the axis, and these projections are nominally
degenerate in energy. The rotation of the molecule, however, can break the degeneracy between
these levels, and (it so happens) the resulting nondegenerate eigenfunctions are also eigenfunctions
of parity. The main point is that the resulting energy splitting is usually quite small, and these
parity states can be mixed in fields much smaller than those required to mix rotational states.”

Like above, they come to the result that the Hamiltonian for a Λ-doubled molecule can be
represented as a 2× 2 matrix,

HΛ =

(
−Q −∆/2

−∆/2 Q

)
, (10)

where ∆ again denotes the lambda doubling energy, i.e., the energy difference between the two
parity states, and Q ∝ d0F > 0 stems from the interaction of the molecular dipole with an electric
field of strength F that points along the z-direction. The difference here from Hamiltonian (8)
is that a different basis is assumed that diagonalizes the electric field interaction rather than the
zero-field Hamiltonian. This change reflects the emphasis on molecules in strong fields where their
dipole are made manifest. Hamiltonian (8) and (10) yield the same energy surfaces.

2 Polyatomic Rydberg Molecules in an External Electric Field

Next, we assume an additional external electric field that acts on our polyatomic Rydberg molecules.
Since the Rydberg molecules have an enormous dipole moment [1], any electric field will orient them
instantaneously. Hence, we can assume the electric field to point along the z-direction, Fext = Fez,
which coincides with the dipole moment of the molecular perturber. Because of the additional

2This chapter is also published as eprint arXiv:0901.0276. However, the arXiv version has to be taken with care
since there are some misprints.
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nice qualitative explanation of the Λ-doubling is given: “As we have made clear in the previous two
sections, the effect of an electric field on a quantum mechanical object is to couple states of opposite
parity. For a molecule in a Π or ∆ state, there are often two such parity states that are much closer
together in energy than the rotational spacing. The two states are said to be the components of a
Λ-doublet. In broad terms, the argument is something like this: a Π state has an electronic angular
momentum projection of magnitude 1 about the molecular axis. This angular momentum comes in
two projections, for the two sense of rotation about the axis, and these projections are nominally
degenerate in energy. The rotation of the molecule, however, can break the degeneracy between
these levels, and (it so happens) the resulting nondegenerate eigenfunctions are also eigenfunctions
of parity. The main point is that the resulting energy splitting is usually quite small, and these
parity states can be mixed in fields much smaller than those required to mix rotational states.”

Like above, they come to the result that the Hamiltonian for a Λ-doubled molecule can be
represented as a 2× 2 matrix,

HΛ =

(
−Q −∆/2

−∆/2 Q

)
, (10)

where ∆ again denotes the lambda doubling energy, i.e., the energy difference between the two
parity states, and Q ∝ d0F > 0 stems from the interaction of the molecular dipole with an electric
field of strength F that points along the z-direction. The difference here from Hamiltonian (8)
is that a different basis is assumed that diagonalizes the electric field interaction rather than the
zero-field Hamiltonian. This change reflects the emphasis on molecules in strong fields where their
dipole are made manifest. Hamiltonian (8) and (10) yield the same energy surfaces.

2 Polyatomic Rydberg Molecules in an External Electric Field

Next, we assume an additional external electric field that acts on our polyatomic Rydberg molecules.
Since the Rydberg molecules have an enormous dipole moment [1], any electric field will orient them
instantaneously. Hence, we can assume the electric field to point along the z-direction, Fext = Fez,
which coincides with the dipole moment of the molecular perturber. Because of the additional

2This chapter is also published as eprint arXiv:0901.0276. However, the arXiv version has to be taken with care
since there are some misprints.
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〈nl0 |Ved| nl′0〉 = dδmm′
√

(2l′ + 1) (2l + 1) (−1)m
l+l′∑

l′′=|l−l′|

(
l l′ l′′

0 0 0

) (
l l′ l′′

m −m 0

)

×
[
(l′′ + 1)

4
n4

√
(n− l − 1)!

(n + l)!

√
(n− l′ − 1)!

(n + l′)!

(n

2

)l′′+3

×
n−l−1∑

p=0

n−l′−1∑

q=0

(−1)p+q

p!q!

(
n + l

n− l − 1− p

) (
n + l′

n− l′ − 1− q

)

× 1
Zl′′+2

(l′′ + 1)
(n

2

)l′′+3
(

Γ (l + l′ + l′′ + p + q + 3)− Γ
(

l + l′ + l′′ + p + q + 3,
2Z

n

))

− 4
n4

√
(n− l − 1)!

(n + l)!

√
(n− l′ − 1)!

(n + l′)!

(n

2

)2−l′′

×
n−l−1∑

p=0

n−l′−1∑

q=0

(−1)p+q

p!q!

(
n + l

n− l − 1− p

) (
n + l′

n− l′ − 1− q

)

× Zl′′−1l′′Γ
(

l + l′ − l′′ + p + q + 2,
2Z

n

)]

That didn’t really help.

III. POLARIZABLE DIPOLE

By deviding by d in the above potentials, we can interpret this as the electric field along the ẑ axis at "R generated
by an electron. If we consider a two state dipole that has energy

εd = d
(
Ec −

√
E2 + E2

c

)

where E is the total electric field, and Ec = ∆/2d is the critical fields strength beyond which the polar molecule is
in the permanent dipole regime. With this we can consider the eigenvalues of the above matrix Eλ

e and the field
generated by the central core giving potentials that look like

Vλ (R) = d



Ec −

√(
Eλ

e (R)− 1
R2

)2

+ E2
c





For n = 35 the resulting potentials and the dipole strength of the molecule are shown in Fig. 1. In Figure 1b the
diploe can be seen entering pointed away from the core and going through a series of avoided crossings to the lowest
potential with the dipole pointed towards the core.

IV. NON-AIABATIC CORRECTIONS

To get the non-adiabatic corrections to these potentials we must consider

〈λ2|
∣∣∣∣

∂

∂R
λ1 (R)

〉
=

∑

l,l′

〈nl′m| |nlm〉 aλ2∗
nl′m (R) aλ1′

nlm (R)

=
∑

l,l′

aλ2∗
nlm (R) aλ1′

nlm (R)

where the ′ indicates a derivative with respect to R.

non-adiabatic terms

Rittenhouse & Sadeghpour, PRL 2010
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FIG. 2: The BO potential curves (left panel) for 87Rb(n=35)
with a polar molecule of strength d0 are shown. The zero
of energy is the Rb(n=35) threshold. Only those angular
momentum states with negligible quantum defect (l ≥ 3) in
Rb are included. The modulations in the potentials are due
to the Rydberg oscillations and the avoided crossings are due
to interactions in the degenerate manifold. The two lowest
potential wells, near R ∼ 2000−2500 a.u., are weakly coupled
with the R (L) well supporting vibrational states of the Rb
molecule oriented away from (toward) the ion core. Positive
values of the dipole (right panel) refer to the orientation of
the molecular dipole away from the ion core and the negative
values indicate the reverse.

the Rydberg core. The presence of a permanent molec-
ular dipole distorts the spherical symmetry, illustrating
the anisotropy of the electron-dipole interaction. The
electron wave function seen in Fig. 3 clumps near the
“positive” side of the dipole with a strong peak in the
electron probability distribution.

The size and energy scales of the giant molecules
generally follow the Rydberg scaling with n. Specifi-
cally, the outer wells in the lowest two R and L po-
tentials have minima, respectively, at Re = 1.92(1)n2

and Re = 1.65(2)n2 with corresponding potential depths
VR = −0.224(1)d0/n3 and VL = −0.234(1)d0/n3. For
d < dcr, the potential depth is less than 10% of Rydberg
energy spacing, allowing us to use degenerate perturba-
tion theory. At Re, the immense charge separation cre-
ates a large permanent dipole moment which scales as
dRm = 1.75n2- for n = 35, it translates to dRm = 5.5kD.

The two outer wells, each corresponding to the molec-
ular dipole oriented toward or away from the ion core, are
shown more clearly in Fig. 4. The two wells support a
large number of vibrational levels within a typical transi-
tion frequency in the 400−500 MHz range. The coupling
between the L and R curves is on the order of O( ∆2

ed0
),

which for OD is " 10−15 a.u. The diagonal corrections
to the energies in the n = 35 manifold, are, respectively,
3× 10−9 and 10−9 a.u.

The choice for a realizable polar molecule depends
on two factors: such molecules should have subcriti-

FIG. 3: (Color Online) A density plot of the electronic wave
function for an n = 35 Rydberg molecule at R = 2300a0 is
shown in cylindrical coordinates. Darker areas show larger
amplitudes of the electronic wave function. The position
of the Rb+ (red circle) and the orientation of the molecular
dipole (green-blue dots) are indicated. The size of the diple is
greatly exaggerated for illustration. The spherical symmetry
is broken by the anisotropic electron-dipole interaction. This
density plot is a realization of the right configuration in Fig.
1.

cal dipoles, but be of sufficient strength for meaning-
ful electron-dipole interaction, and have energy split-
tings which are a fraction of the Rydberg separation.
The hydroxyl radical (OH), a Λ-doublet molecule (2Π3/2,
∆Λ = 1.67 GHz), was recently magnetically trapped [13]
and its cold collision with Xe and He beams were studied
[14]. Deuteration of hydrogen radicals reduces the dou-
blet splitting by several factors [16], making them more
readily polarizable.

In Table I, we give a list of favorable polar molecules.
The ground state of 40K87Rb has been produced with
large phase space density and its dipole moment and ro-
tational splitting (Be) have been established [2]. While
the dipole moment for the KRb molecule is small, its
small rotational splitting (2Be), and its ubiquity make it
a good candidate. The deuterated radical, CD(2Π3/2),
can be polarized with field strength of Fc ∼ 2 × 10−7

a.u. and has a large but subcritical dipole moment,
1.46 D [15]. Another potentially realizable candidate is
metastable CO(a3Π1,2(v = 0)) which lives for 2.63 ms
and its ∆± transition (Ω = 1, J = 1) is 394.1 MHz and
has a dipole moment of 1.38 D [17].

The lowest vibrational levels in L (0L) and R (0R)
wells in Fig. 4 can be coherently coupled in a microwave
Raman process. This fully on-resonance, but weak in-
tensity two-photon transition, via an intermediate vi-
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TABLE I: Choice of polar molecules and their properties.
1 cm−1 ! 30 GHz.

molecule d0(D) ∆(MHz) Fc(a.u.) Be(cm
−1) Ref.

OD
`
2Π3/2

´
1.66 494 6× 10−8 ∼ 40 [13]

KRb
`
1Σg

´
0.566 − 6× 10−7 0.0371 [2]

CD
`
2Π1/2

´
1.46 897 1.6× 10−7 ∼ 60 [15]

CO
`
a3Π1,2

´
1.38 394 7× 10−8 40 [17]
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FIG. 4: The two (L and R) wells of the Rb(n = 35)-
OD(2Π3/2) Rydberg molecule are shown. Also shown, are
a select number of vibrational energy levels and associated
wave functions, and our proposed Raman scheme for coher-
ent population transfer between the two wells and preparation
of superposition states. The quantum numbers refer to the
lowest vibrational states in the left (0L), right (0R), and an
excited level in the right well (vR), and ΩL, and ΩR are the
Rabi frequencies for the Raman transitions.

brational state (vR) in the extended right well (dashed
curve) allows for efficient transfer of population. The
configurations in the L and R wells, respectively, are with
the molecular dipole pointing toward or away from the
ionic core. The coherent Raman scheme ensures that the
molecular dipole orientations become entangled. Since
the distance between the dipoles scales roughly as 0.27n2,
which for n = 35 translates to 16.5 nm, superposition
states are possible.

Here, we discuss the coherent control of the dipole
orientation in a resonant Raman scheme. Due to the
existence of an inner wall in the potential curve which
contains the R well, large Franck-Condon (FC) factors
between the L and R states with the upper vR Raman
states exist. FC factors for 0L → vR and 0R → vR tran-
sitions are typically about 0.02. The electronic transition
dipole moments, with photons polarized along the inter-
nuclear axis, scale as 0.20n2; for n=35 Rydberg state, the
electronic transition dipole moment between states in the
L and upper R wells has a value of 265.6 a.u., giving a

total Raman transistion matrix element, dtr " 0.1 a.u.
To preserve the coherence of the superposition states,
|c± >= 1√

2
[|R > ±|L >], in the presence of the polar-

ization fields, on-resonance microwave field strengths of
Fµ < Fc are desired to not perturb the Rydberg states.
This gives a splitting between the two possible super-
position states of ∆± = 2Ω ∼ 10−8a.u. ∼ 70MHz, where
Ω = dtr ·Fµ is the Rabi frequency. This splitting can eas-
ily be resolved using current microwave techniques with-
out collapsing the superpostition.

In summary, we explore the possibility that giant poly-
atomic Rydberg molecules could readily form in ultra-
cold trapped mixture of atoms and molecules, from in-
teraction of Rydberg atoms and polar molecules. These
molecules which form in double wells contain dipole con-
figurations which can be coherently controlled by a Ra-
man process. The dipolar interaction of two polarized
giant Rydberg molecule could be coupled to the internal
superposition states of the polar molecules. Ionization
of the Rydberg atom from each L and R well can deter-
ministically measure the orientational state of the polar
molecule.

We are grateful to M. Cavagnero, C. Ticknor and J.
Feist for discussions. This work was funded by a grant
from the NSF to ITAMP at the Harvard-Smithsonian
Center for Astrophysics and Harvard Physics Depart-
ment.
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(e-states) or -1 (f-states). The labels f and e are convenient
because they always correspond to the upper and lower
components of a Λ-doublet, unlike the parity indexes ε, which
alternate with J (see Figure 1).

The matrix elements of the Hamiltonian (2) in the basis (5)
can be evaluated as described in our previous work.37 The
eigenstates of the real molecule can be written as linear
combinations of Hund’s case (a) basis functions

where the field-dependent coefficients CJMΩj ε,γ can either be
obtained by numerical diagonalization of the Hamiltonian matrix
or estimated using perturbation theory. The projection of the
total angular momentum of the molecule on the field axis M is
rigorously conserved. In the following, we will use M to label
the field-dressed molecular states (see, e.g., Figure 2).

In order to solve the scattering problem, we expand the total
wave function of the atom-molecule system as37

where

are the uncoupled angular basis functions composed of direct
products of Hund’s case (a) functions (5) and the spherical
harmonics |lml〉 describing the relative motion of the collision
partners in the space-fixed coordinate frame. In eq 8, " is used
as a collective index for {J,M,Ωj ,ε,l,ml}. When substituted into
the Schrödinger equation, the expansion (8) yields a set of close-
coupled (CC) differential equations

The interaction of a 2Π molecule with a structureless atom is
characterized by two potential energy surfaces (PESs) ofA′ and
A′′ symmetries.29 In this work, we use the most recent ab initio
interaction potentials calculated by Lee et al. using the partially
spin-restricted coupled cluster method with single and double
excitations and noniterated triples [RCCSD(T)] with an aug-
cc-pVTZ one-electron basis set extended with bond functions.43

The matrix elements of the interaction potentials in eq 10 can
be readily evaluated from their expansions in associated
Legendre polynomials as described in detail elsewhere.37,44

After transforming the asymptotic wave function to the field-
dressed scattering basis

with |γ〉 given by eq 7, the scattering S-matrix elements can be
determined by analyzing the asymptotic form of the solutions
Fγlml(R).41 The cross sections for elastic energy transfer and
inelastic scattering for a given collision energy Ecoll and electric
field strength are given in terms of the S-matrix elements as37,41

where kγ
2 ) 2µ(Ecoll - εγ) is the wave vector for the incoming

collision channel γ with internal energy εγ and Ecoll is the
collision energy. Averaging the cross sections (12) over a
Maxwell-Boltzmann distribution of collision energies gives the
thermal rate constants for transitions between the individual
Stark states.

The CC equations (10) were integrated out to Rmax ) 60 a0

using the improved log-derivative algorithm46,47 with a constant
step size of 0.1 a0. The spectroscopic constants of OH used in
scattering calculations are (in cm-1): Be ) 18.55, A )-139.273,
p ) 0.235608, and q ) -0.03877 (where p and q are the
Λ-doubling parameters).37,39,40 We use d ) 1.68 D for the
permanent electric dipole moment of OH in the V ) 0 vibrational
state.35,45 The basis set expansion included the rotational states
up to Jmax ) 11/2 and partial waves up to lmax ) 5. In order to
make calculations at higher collision energies feasible, we
reduced the basis set to Jmax ) 7/2 and augmented it with partial
waves up to lmax ) 30. The resulting cross sections were
converged to better than 5%.

III. Results
A. Energy Levels of OH. Figure 1 shows the energy levels

of OH in the absence of external fields. The levels in two fine-
structure manifolds (F1 and F2) are split by the SO interaction.
Because the rotational constant of OH is not negligible compared
to the SO constant (|A/Be| ) 7.5), different values of Ωj are
coupled by the cross terms Ĵ(Ŝ- in eq 2. To illustrate this, we
consider the eigenfunctions |γ〉 corresponding to the energy
levels shown in Figure 1. The rotational states in the F1 manifold
can be expanded in Hund’s case (a) basis functions as follows

Figure 1. Schematic representation of the energy levels of OH in the
absence of external fields. The individual Λ-doublet sublevels are
labeled according to their inversion parity ε ) (. The e/f notation is
illustrated for the F1, J ) 3/2 energy level. Also shown are different
pathways for collision-induced inelastic relaxation: fine-structure (kΩj ),
rotational (kJ), and Λ-doublet changing (kΛ).

|γ〉 ) ∑
J,M,Ω̄,ε

CJMΩ̄ε,γ|JMΩ̄ε〉 (7)

Ψ ) 1
R ∑

"
F"(R)ψ"(R̂, r̂) (8)

ψ"(R̂, r̂) ) |JMΩ̄ε〉|lml〉 (9)

[ d2

dR2
+ 2µE]F"(R) ) 2µ ∑

"′
〈ψ"(R̂, r̂)|V̂(R, θ) + l̂2

2µR2
+

Ĥmol|ψ"′(R̂, r̂)〉F"′(R) (10)

|γ〉|lml〉 (11)

σγfγ′ )
π
kγ

2 ∑
Mtot

∑
l,ml

∑
l',m′l

|δγγ′δll'δml,ml
′ - Sγlml;γ′l'm′l

Mtot |2

(12)
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TABLE I: Choice of polar molecules and their properties.
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molecule d0(D) ∆(MHz) Fc(a.u.) Be(cm
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FIG. 4: The two (L and R) wells of the Rb(n = 35)-
OD(2Π3/2) Rydberg molecule are shown. Also shown, are
a select number of vibrational energy levels and associated
wave functions, and our proposed Raman scheme for coher-
ent population transfer between the two wells and preparation
of superposition states. The quantum numbers refer to the
lowest vibrational states in the left (0L), right (0R), and an
excited level in the right well (vR), and ΩL, and ΩR are the
Rabi frequencies for the Raman transitions.

brational state (vR) in the extended right well (dashed
curve) allows for efficient transfer of population. The
configurations in the L and R wells, respectively, are with
the molecular dipole pointing toward or away from the
ionic core. The coherent Raman scheme ensures that the
molecular dipole orientations become entangled. Since
the distance between the dipoles scales roughly as 0.27n2,
which for n = 35 translates to 16.5 nm, superposition
states are possible.

Here, we discuss the coherent control of the dipole
orientation in a resonant Raman scheme. Due to the
existence of an inner wall in the potential curve which
contains the R well, large Franck-Condon (FC) factors
between the L and R states with the upper vR Raman
states exist. FC factors for 0L → vR and 0R → vR tran-
sitions are typically about 0.02. The electronic transition
dipole moments, with photons polarized along the inter-
nuclear axis, scale as 0.20n2; for n=35 Rydberg state, the
electronic transition dipole moment between states in the
L and upper R wells has a value of 265.6 a.u., giving a

total Raman transistion matrix element, dtr " 0.1 a.u.
To preserve the coherence of the superposition states,
|c± >= 1√

2
[|R > ±|L >], in the presence of the polar-

ization fields, on-resonance microwave field strengths of
Fµ < Fc are desired to not perturb the Rydberg states.
This gives a splitting between the two possible super-
position states of ∆± = 2Ω ∼ 10−8a.u. ∼ 70MHz, where
Ω = dtr ·Fµ is the Rabi frequency. This splitting can eas-
ily be resolved using current microwave techniques with-
out collapsing the superpostition.

In summary, we explore the possibility that giant poly-
atomic Rydberg molecules could readily form in ultra-
cold trapped mixture of atoms and molecules, from in-
teraction of Rydberg atoms and polar molecules. These
molecules which form in double wells contain dipole con-
figurations which can be coherently controlled by a Ra-
man process. The dipolar interaction of two polarized
giant Rydberg molecule could be coupled to the internal
superposition states of the polar molecules. Ionization
of the Rydberg atom from each L and R well can deter-
ministically measure the orientational state of the polar
molecule.

We are grateful to M. Cavagnero, C. Ticknor and J.
Feist for discussions. This work was funded by a grant
from the NSF to ITAMP at the Harvard-Smithsonian
Center for Astrophysics and Harvard Physics Depart-
ment.
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(e-states) or -1 (f-states). The labels f and e are convenient
because they always correspond to the upper and lower
components of a Λ-doublet, unlike the parity indexes ε, which
alternate with J (see Figure 1).

The matrix elements of the Hamiltonian (2) in the basis (5)
can be evaluated as described in our previous work.37 The
eigenstates of the real molecule can be written as linear
combinations of Hund’s case (a) basis functions

where the field-dependent coefficients CJMΩj ε,γ can either be
obtained by numerical diagonalization of the Hamiltonian matrix
or estimated using perturbation theory. The projection of the
total angular momentum of the molecule on the field axis M is
rigorously conserved. In the following, we will use M to label
the field-dressed molecular states (see, e.g., Figure 2).

In order to solve the scattering problem, we expand the total
wave function of the atom-molecule system as37

where

are the uncoupled angular basis functions composed of direct
products of Hund’s case (a) functions (5) and the spherical
harmonics |lml〉 describing the relative motion of the collision
partners in the space-fixed coordinate frame. In eq 8, " is used
as a collective index for {J,M,Ωj ,ε,l,ml}. When substituted into
the Schrödinger equation, the expansion (8) yields a set of close-
coupled (CC) differential equations

The interaction of a 2Π molecule with a structureless atom is
characterized by two potential energy surfaces (PESs) ofA′ and
A′′ symmetries.29 In this work, we use the most recent ab initio
interaction potentials calculated by Lee et al. using the partially
spin-restricted coupled cluster method with single and double
excitations and noniterated triples [RCCSD(T)] with an aug-
cc-pVTZ one-electron basis set extended with bond functions.43

The matrix elements of the interaction potentials in eq 10 can
be readily evaluated from their expansions in associated
Legendre polynomials as described in detail elsewhere.37,44

After transforming the asymptotic wave function to the field-
dressed scattering basis

with |γ〉 given by eq 7, the scattering S-matrix elements can be
determined by analyzing the asymptotic form of the solutions
Fγlml(R).41 The cross sections for elastic energy transfer and
inelastic scattering for a given collision energy Ecoll and electric
field strength are given in terms of the S-matrix elements as37,41

where kγ
2 ) 2µ(Ecoll - εγ) is the wave vector for the incoming

collision channel γ with internal energy εγ and Ecoll is the
collision energy. Averaging the cross sections (12) over a
Maxwell-Boltzmann distribution of collision energies gives the
thermal rate constants for transitions between the individual
Stark states.

The CC equations (10) were integrated out to Rmax ) 60 a0

using the improved log-derivative algorithm46,47 with a constant
step size of 0.1 a0. The spectroscopic constants of OH used in
scattering calculations are (in cm-1): Be ) 18.55, A )-139.273,
p ) 0.235608, and q ) -0.03877 (where p and q are the
Λ-doubling parameters).37,39,40 We use d ) 1.68 D for the
permanent electric dipole moment of OH in the V ) 0 vibrational
state.35,45 The basis set expansion included the rotational states
up to Jmax ) 11/2 and partial waves up to lmax ) 5. In order to
make calculations at higher collision energies feasible, we
reduced the basis set to Jmax ) 7/2 and augmented it with partial
waves up to lmax ) 30. The resulting cross sections were
converged to better than 5%.

III. Results
A. Energy Levels of OH. Figure 1 shows the energy levels

of OH in the absence of external fields. The levels in two fine-
structure manifolds (F1 and F2) are split by the SO interaction.
Because the rotational constant of OH is not negligible compared
to the SO constant (|A/Be| ) 7.5), different values of Ωj are
coupled by the cross terms Ĵ(Ŝ- in eq 2. To illustrate this, we
consider the eigenfunctions |γ〉 corresponding to the energy
levels shown in Figure 1. The rotational states in the F1 manifold
can be expanded in Hund’s case (a) basis functions as follows

Figure 1. Schematic representation of the energy levels of OH in the
absence of external fields. The individual Λ-doublet sublevels are
labeled according to their inversion parity ε ) (. The e/f notation is
illustrated for the F1, J ) 3/2 energy level. Also shown are different
pathways for collision-induced inelastic relaxation: fine-structure (kΩj ),
rotational (kJ), and Λ-doublet changing (kΛ).
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TABLE I: Choice of polar molecules and their properties.
1 cm−1 ! 30 GHz.

molecule d0(D) ∆(MHz) Fc(a.u.) Be(cm
−1) Ref.

OD
`
2Π3/2

´
1.66 494 6× 10−8 ∼ 40 [13]

KRb
`
1Σg

´
0.566 − 6× 10−7 0.0371 [2]

CD
`
2Π1/2

´
1.46 897 1.6× 10−7 ∼ 60 [15]

CO
`
a3Π1,2

´
1.38 394 7× 10−8 40 [17]
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FIG. 4: The two (L and R) wells of the Rb(n = 35)-
OD(2Π3/2) Rydberg molecule are shown. Also shown, are
a select number of vibrational energy levels and associated
wave functions, and our proposed Raman scheme for coher-
ent population transfer between the two wells and preparation
of superposition states. The quantum numbers refer to the
lowest vibrational states in the left (0L), right (0R), and an
excited level in the right well (vR), and ΩL, and ΩR are the
Rabi frequencies for the Raman transitions.

brational state (vR) in the extended right well (dashed
curve) allows for efficient transfer of population. The
configurations in the L and R wells, respectively, are with
the molecular dipole pointing toward or away from the
ionic core. The coherent Raman scheme ensures that the
molecular dipole orientations become entangled. Since
the distance between the dipoles scales roughly as 0.27n2,
which for n = 35 translates to 16.5 nm, superposition
states are possible.

Here, we discuss the coherent control of the dipole
orientation in a resonant Raman scheme. Due to the
existence of an inner wall in the potential curve which
contains the R well, large Franck-Condon (FC) factors
between the L and R states with the upper vR Raman
states exist. FC factors for 0L → vR and 0R → vR tran-
sitions are typically about 0.02. The electronic transition
dipole moments, with photons polarized along the inter-
nuclear axis, scale as 0.20n2; for n=35 Rydberg state, the
electronic transition dipole moment between states in the
L and upper R wells has a value of 265.6 a.u., giving a

total Raman transistion matrix element, dtr " 0.1 a.u.
To preserve the coherence of the superposition states,
|c± >= 1√

2
[|R > ±|L >], in the presence of the polar-

ization fields, on-resonance microwave field strengths of
Fµ < Fc are desired to not perturb the Rydberg states.
This gives a splitting between the two possible super-
position states of ∆± = 2Ω ∼ 10−8a.u. ∼ 70MHz, where
Ω = dtr ·Fµ is the Rabi frequency. This splitting can eas-
ily be resolved using current microwave techniques with-
out collapsing the superpostition.

In summary, we explore the possibility that giant poly-
atomic Rydberg molecules could readily form in ultra-
cold trapped mixture of atoms and molecules, from in-
teraction of Rydberg atoms and polar molecules. These
molecules which form in double wells contain dipole con-
figurations which can be coherently controlled by a Ra-
man process. The dipolar interaction of two polarized
giant Rydberg molecule could be coupled to the internal
superposition states of the polar molecules. Ionization
of the Rydberg atom from each L and R well can deter-
ministically measure the orientational state of the polar
molecule.

We are grateful to M. Cavagnero, C. Ticknor and J.
Feist for discussions. This work was funded by a grant
from the NSF to ITAMP at the Harvard-Smithsonian
Center for Astrophysics and Harvard Physics Depart-
ment.
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(e-states) or -1 (f-states). The labels f and e are convenient
because they always correspond to the upper and lower
components of a Λ-doublet, unlike the parity indexes ε, which
alternate with J (see Figure 1).

The matrix elements of the Hamiltonian (2) in the basis (5)
can be evaluated as described in our previous work.37 The
eigenstates of the real molecule can be written as linear
combinations of Hund’s case (a) basis functions

where the field-dependent coefficients CJMΩj ε,γ can either be
obtained by numerical diagonalization of the Hamiltonian matrix
or estimated using perturbation theory. The projection of the
total angular momentum of the molecule on the field axis M is
rigorously conserved. In the following, we will use M to label
the field-dressed molecular states (see, e.g., Figure 2).

In order to solve the scattering problem, we expand the total
wave function of the atom-molecule system as37

where

are the uncoupled angular basis functions composed of direct
products of Hund’s case (a) functions (5) and the spherical
harmonics |lml〉 describing the relative motion of the collision
partners in the space-fixed coordinate frame. In eq 8, " is used
as a collective index for {J,M,Ωj ,ε,l,ml}. When substituted into
the Schrödinger equation, the expansion (8) yields a set of close-
coupled (CC) differential equations

The interaction of a 2Π molecule with a structureless atom is
characterized by two potential energy surfaces (PESs) ofA′ and
A′′ symmetries.29 In this work, we use the most recent ab initio
interaction potentials calculated by Lee et al. using the partially
spin-restricted coupled cluster method with single and double
excitations and noniterated triples [RCCSD(T)] with an aug-
cc-pVTZ one-electron basis set extended with bond functions.43

The matrix elements of the interaction potentials in eq 10 can
be readily evaluated from their expansions in associated
Legendre polynomials as described in detail elsewhere.37,44

After transforming the asymptotic wave function to the field-
dressed scattering basis

with |γ〉 given by eq 7, the scattering S-matrix elements can be
determined by analyzing the asymptotic form of the solutions
Fγlml(R).41 The cross sections for elastic energy transfer and
inelastic scattering for a given collision energy Ecoll and electric
field strength are given in terms of the S-matrix elements as37,41

where kγ
2 ) 2µ(Ecoll - εγ) is the wave vector for the incoming

collision channel γ with internal energy εγ and Ecoll is the
collision energy. Averaging the cross sections (12) over a
Maxwell-Boltzmann distribution of collision energies gives the
thermal rate constants for transitions between the individual
Stark states.

The CC equations (10) were integrated out to Rmax ) 60 a0

using the improved log-derivative algorithm46,47 with a constant
step size of 0.1 a0. The spectroscopic constants of OH used in
scattering calculations are (in cm-1): Be ) 18.55, A )-139.273,
p ) 0.235608, and q ) -0.03877 (where p and q are the
Λ-doubling parameters).37,39,40 We use d ) 1.68 D for the
permanent electric dipole moment of OH in the V ) 0 vibrational
state.35,45 The basis set expansion included the rotational states
up to Jmax ) 11/2 and partial waves up to lmax ) 5. In order to
make calculations at higher collision energies feasible, we
reduced the basis set to Jmax ) 7/2 and augmented it with partial
waves up to lmax ) 30. The resulting cross sections were
converged to better than 5%.

III. Results
A. Energy Levels of OH. Figure 1 shows the energy levels

of OH in the absence of external fields. The levels in two fine-
structure manifolds (F1 and F2) are split by the SO interaction.
Because the rotational constant of OH is not negligible compared
to the SO constant (|A/Be| ) 7.5), different values of Ωj are
coupled by the cross terms Ĵ(Ŝ- in eq 2. To illustrate this, we
consider the eigenfunctions |γ〉 corresponding to the energy
levels shown in Figure 1. The rotational states in the F1 manifold
can be expanded in Hund’s case (a) basis functions as follows

Figure 1. Schematic representation of the energy levels of OH in the
absence of external fields. The individual Λ-doublet sublevels are
labeled according to their inversion parity ε ) (. The e/f notation is
illustrated for the F1, J ) 3/2 energy level. Also shown are different
pathways for collision-induced inelastic relaxation: fine-structure (kΩj ),
rotational (kJ), and Λ-doublet changing (kΛ).
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TABLE I: Choice of polar molecules and their properties.
1 cm−1 ! 30 GHz.

molecule d0(D) ∆(MHz) Fc(a.u.) Be(cm
−1) Ref.

OD
`
2Π3/2

´
1.66 494 6× 10−8 ∼ 40 [13]

KRb
`
1Σg

´
0.566 − 6× 10−7 0.0371 [2]

CD
`
2Π1/2

´
1.46 897 1.6× 10−7 ∼ 60 [15]

CO
`
a3Π1,2

´
1.38 394 7× 10−8 40 [17]
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FIG. 4: The two (L and R) wells of the Rb(n = 35)-
OD(2Π3/2) Rydberg molecule are shown. Also shown, are
a select number of vibrational energy levels and associated
wave functions, and our proposed Raman scheme for coher-
ent population transfer between the two wells and preparation
of superposition states. The quantum numbers refer to the
lowest vibrational states in the left (0L), right (0R), and an
excited level in the right well (vR), and ΩL, and ΩR are the
Rabi frequencies for the Raman transitions.

brational state (vR) in the extended right well (dashed
curve) allows for efficient transfer of population. The
configurations in the L and R wells, respectively, are with
the molecular dipole pointing toward or away from the
ionic core. The coherent Raman scheme ensures that the
molecular dipole orientations become entangled. Since
the distance between the dipoles scales roughly as 0.27n2,
which for n = 35 translates to 16.5 nm, superposition
states are possible.

Here, we discuss the coherent control of the dipole
orientation in a resonant Raman scheme. Due to the
existence of an inner wall in the potential curve which
contains the R well, large Franck-Condon (FC) factors
between the L and R states with the upper vR Raman
states exist. FC factors for 0L → vR and 0R → vR tran-
sitions are typically about 0.02. The electronic transition
dipole moments, with photons polarized along the inter-
nuclear axis, scale as 0.20n2; for n=35 Rydberg state, the
electronic transition dipole moment between states in the
L and upper R wells has a value of 265.6 a.u., giving a

total Raman transistion matrix element, dtr " 0.1 a.u.
To preserve the coherence of the superposition states,
|c± >= 1√

2
[|R > ±|L >], in the presence of the polar-

ization fields, on-resonance microwave field strengths of
Fµ < Fc are desired to not perturb the Rydberg states.
This gives a splitting between the two possible super-
position states of ∆± = 2Ω ∼ 10−8a.u. ∼ 70MHz, where
Ω = dtr ·Fµ is the Rabi frequency. This splitting can eas-
ily be resolved using current microwave techniques with-
out collapsing the superpostition.

In summary, we explore the possibility that giant poly-
atomic Rydberg molecules could readily form in ultra-
cold trapped mixture of atoms and molecules, from in-
teraction of Rydberg atoms and polar molecules. These
molecules which form in double wells contain dipole con-
figurations which can be coherently controlled by a Ra-
man process. The dipolar interaction of two polarized
giant Rydberg molecule could be coupled to the internal
superposition states of the polar molecules. Ionization
of the Rydberg atom from each L and R well can deter-
ministically measure the orientational state of the polar
molecule.

We are grateful to M. Cavagnero, C. Ticknor and J.
Feist for discussions. This work was funded by a grant
from the NSF to ITAMP at the Harvard-Smithsonian
Center for Astrophysics and Harvard Physics Depart-
ment.
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(e-states) or -1 (f-states). The labels f and e are convenient
because they always correspond to the upper and lower
components of a Λ-doublet, unlike the parity indexes ε, which
alternate with J (see Figure 1).

The matrix elements of the Hamiltonian (2) in the basis (5)
can be evaluated as described in our previous work.37 The
eigenstates of the real molecule can be written as linear
combinations of Hund’s case (a) basis functions

where the field-dependent coefficients CJMΩj ε,γ can either be
obtained by numerical diagonalization of the Hamiltonian matrix
or estimated using perturbation theory. The projection of the
total angular momentum of the molecule on the field axis M is
rigorously conserved. In the following, we will use M to label
the field-dressed molecular states (see, e.g., Figure 2).

In order to solve the scattering problem, we expand the total
wave function of the atom-molecule system as37

where

are the uncoupled angular basis functions composed of direct
products of Hund’s case (a) functions (5) and the spherical
harmonics |lml〉 describing the relative motion of the collision
partners in the space-fixed coordinate frame. In eq 8, " is used
as a collective index for {J,M,Ωj ,ε,l,ml}. When substituted into
the Schrödinger equation, the expansion (8) yields a set of close-
coupled (CC) differential equations

The interaction of a 2Π molecule with a structureless atom is
characterized by two potential energy surfaces (PESs) ofA′ and
A′′ symmetries.29 In this work, we use the most recent ab initio
interaction potentials calculated by Lee et al. using the partially
spin-restricted coupled cluster method with single and double
excitations and noniterated triples [RCCSD(T)] with an aug-
cc-pVTZ one-electron basis set extended with bond functions.43

The matrix elements of the interaction potentials in eq 10 can
be readily evaluated from their expansions in associated
Legendre polynomials as described in detail elsewhere.37,44

After transforming the asymptotic wave function to the field-
dressed scattering basis

with |γ〉 given by eq 7, the scattering S-matrix elements can be
determined by analyzing the asymptotic form of the solutions
Fγlml(R).41 The cross sections for elastic energy transfer and
inelastic scattering for a given collision energy Ecoll and electric
field strength are given in terms of the S-matrix elements as37,41

where kγ
2 ) 2µ(Ecoll - εγ) is the wave vector for the incoming

collision channel γ with internal energy εγ and Ecoll is the
collision energy. Averaging the cross sections (12) over a
Maxwell-Boltzmann distribution of collision energies gives the
thermal rate constants for transitions between the individual
Stark states.

The CC equations (10) were integrated out to Rmax ) 60 a0

using the improved log-derivative algorithm46,47 with a constant
step size of 0.1 a0. The spectroscopic constants of OH used in
scattering calculations are (in cm-1): Be ) 18.55, A )-139.273,
p ) 0.235608, and q ) -0.03877 (where p and q are the
Λ-doubling parameters).37,39,40 We use d ) 1.68 D for the
permanent electric dipole moment of OH in the V ) 0 vibrational
state.35,45 The basis set expansion included the rotational states
up to Jmax ) 11/2 and partial waves up to lmax ) 5. In order to
make calculations at higher collision energies feasible, we
reduced the basis set to Jmax ) 7/2 and augmented it with partial
waves up to lmax ) 30. The resulting cross sections were
converged to better than 5%.

III. Results
A. Energy Levels of OH. Figure 1 shows the energy levels

of OH in the absence of external fields. The levels in two fine-
structure manifolds (F1 and F2) are split by the SO interaction.
Because the rotational constant of OH is not negligible compared
to the SO constant (|A/Be| ) 7.5), different values of Ωj are
coupled by the cross terms Ĵ(Ŝ- in eq 2. To illustrate this, we
consider the eigenfunctions |γ〉 corresponding to the energy
levels shown in Figure 1. The rotational states in the F1 manifold
can be expanded in Hund’s case (a) basis functions as follows

Figure 1. Schematic representation of the energy levels of OH in the
absence of external fields. The individual Λ-doublet sublevels are
labeled according to their inversion parity ε ) (. The e/f notation is
illustrated for the F1, J ) 3/2 energy level. Also shown are different
pathways for collision-induced inelastic relaxation: fine-structure (kΩj ),
rotational (kJ), and Λ-doublet changing (kΛ).
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CH: ∆Λ = 3.03 GHz
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on-resonance coherent Raman transition

OD: ∆Λ = 0.5 GHz
d = 1.60D
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TABLE I: Choice of polar molecules and their properties.
1 cm−1 ! 30 GHz.

molecule d0(D) ∆(MHz) Fc(a.u.) Be(cm
−1) Ref.

OD
`
2Π3/2

´
1.66 494 6× 10−8 ∼ 40 [13]

KRb
`
1Σg

´
0.566 − 6× 10−7 0.0371 [2]

CD
`
2Π1/2

´
1.46 897 1.6× 10−7 ∼ 60 [15]

CO
`
a3Π1,2

´
1.38 394 7× 10−8 40 [17]
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FIG. 4: The two (L and R) wells of the Rb(n = 35)-
OD(2Π3/2) Rydberg molecule are shown. Also shown, are
a select number of vibrational energy levels and associated
wave functions, and our proposed Raman scheme for coher-
ent population transfer between the two wells and preparation
of superposition states. The quantum numbers refer to the
lowest vibrational states in the left (0L), right (0R), and an
excited level in the right well (vR), and ΩL, and ΩR are the
Rabi frequencies for the Raman transitions.

brational state (vR) in the extended right well (dashed
curve) allows for efficient transfer of population. The
configurations in the L and R wells, respectively, are with
the molecular dipole pointing toward or away from the
ionic core. The coherent Raman scheme ensures that the
molecular dipole orientations become entangled. Since
the distance between the dipoles scales roughly as 0.27n2,
which for n = 35 translates to 16.5 nm, superposition
states are possible.

Here, we discuss the coherent control of the dipole
orientation in a resonant Raman scheme. Due to the
existence of an inner wall in the potential curve which
contains the R well, large Franck-Condon (FC) factors
between the L and R states with the upper vR Raman
states exist. FC factors for 0L → vR and 0R → vR tran-
sitions are typically about 0.02. The electronic transition
dipole moments, with photons polarized along the inter-
nuclear axis, scale as 0.20n2; for n=35 Rydberg state, the
electronic transition dipole moment between states in the
L and upper R wells has a value of 265.6 a.u., giving a

total Raman transistion matrix element, dtr " 0.1 a.u.
To preserve the coherence of the superposition states,
|c± >= 1√

2
[|R > ±|L >], in the presence of the polar-

ization fields, on-resonance microwave field strengths of
Fµ < Fc are desired to not perturb the Rydberg states.
This gives a splitting between the two possible super-
position states of ∆± = 2Ω ∼ 10−8a.u. ∼ 70MHz, where
Ω = dtr ·Fµ is the Rabi frequency. This splitting can eas-
ily be resolved using current microwave techniques with-
out collapsing the superpostition.

In summary, we explore the possibility that giant poly-
atomic Rydberg molecules could readily form in ultra-
cold trapped mixture of atoms and molecules, from in-
teraction of Rydberg atoms and polar molecules. These
molecules which form in double wells contain dipole con-
figurations which can be coherently controlled by a Ra-
man process. The dipolar interaction of two polarized
giant Rydberg molecule could be coupled to the internal
superposition states of the polar molecules. Ionization
of the Rydberg atom from each L and R well can deter-
ministically measure the orientational state of the polar
molecule.
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(e-states) or -1 (f-states). The labels f and e are convenient
because they always correspond to the upper and lower
components of a Λ-doublet, unlike the parity indexes ε, which
alternate with J (see Figure 1).

The matrix elements of the Hamiltonian (2) in the basis (5)
can be evaluated as described in our previous work.37 The
eigenstates of the real molecule can be written as linear
combinations of Hund’s case (a) basis functions

where the field-dependent coefficients CJMΩj ε,γ can either be
obtained by numerical diagonalization of the Hamiltonian matrix
or estimated using perturbation theory. The projection of the
total angular momentum of the molecule on the field axis M is
rigorously conserved. In the following, we will use M to label
the field-dressed molecular states (see, e.g., Figure 2).

In order to solve the scattering problem, we expand the total
wave function of the atom-molecule system as37

where

are the uncoupled angular basis functions composed of direct
products of Hund’s case (a) functions (5) and the spherical
harmonics |lml〉 describing the relative motion of the collision
partners in the space-fixed coordinate frame. In eq 8, " is used
as a collective index for {J,M,Ωj ,ε,l,ml}. When substituted into
the Schrödinger equation, the expansion (8) yields a set of close-
coupled (CC) differential equations

The interaction of a 2Π molecule with a structureless atom is
characterized by two potential energy surfaces (PESs) ofA′ and
A′′ symmetries.29 In this work, we use the most recent ab initio
interaction potentials calculated by Lee et al. using the partially
spin-restricted coupled cluster method with single and double
excitations and noniterated triples [RCCSD(T)] with an aug-
cc-pVTZ one-electron basis set extended with bond functions.43

The matrix elements of the interaction potentials in eq 10 can
be readily evaluated from their expansions in associated
Legendre polynomials as described in detail elsewhere.37,44

After transforming the asymptotic wave function to the field-
dressed scattering basis

with |γ〉 given by eq 7, the scattering S-matrix elements can be
determined by analyzing the asymptotic form of the solutions
Fγlml(R).41 The cross sections for elastic energy transfer and
inelastic scattering for a given collision energy Ecoll and electric
field strength are given in terms of the S-matrix elements as37,41

where kγ
2 ) 2µ(Ecoll - εγ) is the wave vector for the incoming

collision channel γ with internal energy εγ and Ecoll is the
collision energy. Averaging the cross sections (12) over a
Maxwell-Boltzmann distribution of collision energies gives the
thermal rate constants for transitions between the individual
Stark states.

The CC equations (10) were integrated out to Rmax ) 60 a0

using the improved log-derivative algorithm46,47 with a constant
step size of 0.1 a0. The spectroscopic constants of OH used in
scattering calculations are (in cm-1): Be ) 18.55, A )-139.273,
p ) 0.235608, and q ) -0.03877 (where p and q are the
Λ-doubling parameters).37,39,40 We use d ) 1.68 D for the
permanent electric dipole moment of OH in the V ) 0 vibrational
state.35,45 The basis set expansion included the rotational states
up to Jmax ) 11/2 and partial waves up to lmax ) 5. In order to
make calculations at higher collision energies feasible, we
reduced the basis set to Jmax ) 7/2 and augmented it with partial
waves up to lmax ) 30. The resulting cross sections were
converged to better than 5%.

III. Results
A. Energy Levels of OH. Figure 1 shows the energy levels

of OH in the absence of external fields. The levels in two fine-
structure manifolds (F1 and F2) are split by the SO interaction.
Because the rotational constant of OH is not negligible compared
to the SO constant (|A/Be| ) 7.5), different values of Ωj are
coupled by the cross terms Ĵ(Ŝ- in eq 2. To illustrate this, we
consider the eigenfunctions |γ〉 corresponding to the energy
levels shown in Figure 1. The rotational states in the F1 manifold
can be expanded in Hund’s case (a) basis functions as follows

Figure 1. Schematic representation of the energy levels of OH in the
absence of external fields. The individual Λ-doublet sublevels are
labeled according to their inversion parity ε ) (. The e/f notation is
illustrated for the F1, J ) 3/2 energy level. Also shown are different
pathways for collision-induced inelastic relaxation: fine-structure (kΩj ),
rotational (kJ), and Λ-doublet changing (kΛ).
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TABLE I: Choice of polar molecules and their properties.
1 cm−1 ! 30 GHz.

molecule d0(D) ∆(MHz) Fc(a.u.) Be(cm
−1) Ref.

OD
`
2Π3/2

´
1.66 494 6× 10−8 ∼ 40 [13]

KRb
`
1Σg

´
0.566 − 6× 10−7 0.0371 [2]

CD
`
2Π1/2

´
1.46 897 1.6× 10−7 ∼ 60 [15]

CO
`
a3Π1,2

´
1.38 394 7× 10−8 40 [17]
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FIG. 4: The two (L and R) wells of the Rb(n = 35)-
OD(2Π3/2) Rydberg molecule are shown. Also shown, are
a select number of vibrational energy levels and associated
wave functions, and our proposed Raman scheme for coher-
ent population transfer between the two wells and preparation
of superposition states. The quantum numbers refer to the
lowest vibrational states in the left (0L), right (0R), and an
excited level in the right well (vR), and ΩL, and ΩR are the
Rabi frequencies for the Raman transitions.

brational state (vR) in the extended right well (dashed
curve) allows for efficient transfer of population. The
configurations in the L and R wells, respectively, are with
the molecular dipole pointing toward or away from the
ionic core. The coherent Raman scheme ensures that the
molecular dipole orientations become entangled. Since
the distance between the dipoles scales roughly as 0.27n2,
which for n = 35 translates to 16.5 nm, superposition
states are possible.

Here, we discuss the coherent control of the dipole
orientation in a resonant Raman scheme. Due to the
existence of an inner wall in the potential curve which
contains the R well, large Franck-Condon (FC) factors
between the L and R states with the upper vR Raman
states exist. FC factors for 0L → vR and 0R → vR tran-
sitions are typically about 0.02. The electronic transition
dipole moments, with photons polarized along the inter-
nuclear axis, scale as 0.20n2; for n=35 Rydberg state, the
electronic transition dipole moment between states in the
L and upper R wells has a value of 265.6 a.u., giving a

total Raman transistion matrix element, dtr " 0.1 a.u.
To preserve the coherence of the superposition states,
|c± >= 1√

2
[|R > ±|L >], in the presence of the polar-

ization fields, on-resonance microwave field strengths of
Fµ < Fc are desired to not perturb the Rydberg states.
This gives a splitting between the two possible super-
position states of ∆± = 2Ω ∼ 10−8a.u. ∼ 70MHz, where
Ω = dtr ·Fµ is the Rabi frequency. This splitting can eas-
ily be resolved using current microwave techniques with-
out collapsing the superpostition.

In summary, we explore the possibility that giant poly-
atomic Rydberg molecules could readily form in ultra-
cold trapped mixture of atoms and molecules, from in-
teraction of Rydberg atoms and polar molecules. These
molecules which form in double wells contain dipole con-
figurations which can be coherently controlled by a Ra-
man process. The dipolar interaction of two polarized
giant Rydberg molecule could be coupled to the internal
superposition states of the polar molecules. Ionization
of the Rydberg atom from each L and R well can deter-
ministically measure the orientational state of the polar
molecule.
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(e-states) or -1 (f-states). The labels f and e are convenient
because they always correspond to the upper and lower
components of a Λ-doublet, unlike the parity indexes ε, which
alternate with J (see Figure 1).

The matrix elements of the Hamiltonian (2) in the basis (5)
can be evaluated as described in our previous work.37 The
eigenstates of the real molecule can be written as linear
combinations of Hund’s case (a) basis functions

where the field-dependent coefficients CJMΩj ε,γ can either be
obtained by numerical diagonalization of the Hamiltonian matrix
or estimated using perturbation theory. The projection of the
total angular momentum of the molecule on the field axis M is
rigorously conserved. In the following, we will use M to label
the field-dressed molecular states (see, e.g., Figure 2).

In order to solve the scattering problem, we expand the total
wave function of the atom-molecule system as37

where

are the uncoupled angular basis functions composed of direct
products of Hund’s case (a) functions (5) and the spherical
harmonics |lml〉 describing the relative motion of the collision
partners in the space-fixed coordinate frame. In eq 8, " is used
as a collective index for {J,M,Ωj ,ε,l,ml}. When substituted into
the Schrödinger equation, the expansion (8) yields a set of close-
coupled (CC) differential equations

The interaction of a 2Π molecule with a structureless atom is
characterized by two potential energy surfaces (PESs) ofA′ and
A′′ symmetries.29 In this work, we use the most recent ab initio
interaction potentials calculated by Lee et al. using the partially
spin-restricted coupled cluster method with single and double
excitations and noniterated triples [RCCSD(T)] with an aug-
cc-pVTZ one-electron basis set extended with bond functions.43

The matrix elements of the interaction potentials in eq 10 can
be readily evaluated from their expansions in associated
Legendre polynomials as described in detail elsewhere.37,44

After transforming the asymptotic wave function to the field-
dressed scattering basis

with |γ〉 given by eq 7, the scattering S-matrix elements can be
determined by analyzing the asymptotic form of the solutions
Fγlml(R).41 The cross sections for elastic energy transfer and
inelastic scattering for a given collision energy Ecoll and electric
field strength are given in terms of the S-matrix elements as37,41

where kγ
2 ) 2µ(Ecoll - εγ) is the wave vector for the incoming

collision channel γ with internal energy εγ and Ecoll is the
collision energy. Averaging the cross sections (12) over a
Maxwell-Boltzmann distribution of collision energies gives the
thermal rate constants for transitions between the individual
Stark states.

The CC equations (10) were integrated out to Rmax ) 60 a0

using the improved log-derivative algorithm46,47 with a constant
step size of 0.1 a0. The spectroscopic constants of OH used in
scattering calculations are (in cm-1): Be ) 18.55, A )-139.273,
p ) 0.235608, and q ) -0.03877 (where p and q are the
Λ-doubling parameters).37,39,40 We use d ) 1.68 D for the
permanent electric dipole moment of OH in the V ) 0 vibrational
state.35,45 The basis set expansion included the rotational states
up to Jmax ) 11/2 and partial waves up to lmax ) 5. In order to
make calculations at higher collision energies feasible, we
reduced the basis set to Jmax ) 7/2 and augmented it with partial
waves up to lmax ) 30. The resulting cross sections were
converged to better than 5%.

III. Results
A. Energy Levels of OH. Figure 1 shows the energy levels

of OH in the absence of external fields. The levels in two fine-
structure manifolds (F1 and F2) are split by the SO interaction.
Because the rotational constant of OH is not negligible compared
to the SO constant (|A/Be| ) 7.5), different values of Ωj are
coupled by the cross terms Ĵ(Ŝ- in eq 2. To illustrate this, we
consider the eigenfunctions |γ〉 corresponding to the energy
levels shown in Figure 1. The rotational states in the F1 manifold
can be expanded in Hund’s case (a) basis functions as follows

Figure 1. Schematic representation of the energy levels of OH in the
absence of external fields. The individual Λ-doublet sublevels are
labeled according to their inversion parity ε ) (. The e/f notation is
illustrated for the F1, J ) 3/2 energy level. Also shown are different
pathways for collision-induced inelastic relaxation: fine-structure (kΩj ),
rotational (kJ), and Λ-doublet changing (kΛ).
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TABLE I: Choice of polar molecules and their properties.
1 cm−1 ! 30 GHz.

molecule d0(D) ∆(MHz) Fc(a.u.) Be(cm
−1) Ref.

OD
`
2Π3/2

´
1.66 494 6× 10−8 ∼ 40 [13]

KRb
`
1Σg

´
0.566 − 6× 10−7 0.0371 [2]

CD
`
2Π1/2

´
1.46 897 1.6× 10−7 ∼ 60 [15]

CO
`
a3Π1,2

´
1.38 394 7× 10−8 40 [17]
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FIG. 4: The two (L and R) wells of the Rb(n = 35)-
OD(2Π3/2) Rydberg molecule are shown. Also shown, are
a select number of vibrational energy levels and associated
wave functions, and our proposed Raman scheme for coher-
ent population transfer between the two wells and preparation
of superposition states. The quantum numbers refer to the
lowest vibrational states in the left (0L), right (0R), and an
excited level in the right well (vR), and ΩL, and ΩR are the
Rabi frequencies for the Raman transitions.

brational state (vR) in the extended right well (dashed
curve) allows for efficient transfer of population. The
configurations in the L and R wells, respectively, are with
the molecular dipole pointing toward or away from the
ionic core. The coherent Raman scheme ensures that the
molecular dipole orientations become entangled. Since
the distance between the dipoles scales roughly as 0.27n2,
which for n = 35 translates to 16.5 nm, superposition
states are possible.

Here, we discuss the coherent control of the dipole
orientation in a resonant Raman scheme. Due to the
existence of an inner wall in the potential curve which
contains the R well, large Franck-Condon (FC) factors
between the L and R states with the upper vR Raman
states exist. FC factors for 0L → vR and 0R → vR tran-
sitions are typically about 0.02. The electronic transition
dipole moments, with photons polarized along the inter-
nuclear axis, scale as 0.20n2; for n=35 Rydberg state, the
electronic transition dipole moment between states in the
L and upper R wells has a value of 265.6 a.u., giving a

total Raman transistion matrix element, dtr " 0.1 a.u.
To preserve the coherence of the superposition states,
|c± >= 1√

2
[|R > ±|L >], in the presence of the polar-

ization fields, on-resonance microwave field strengths of
Fµ < Fc are desired to not perturb the Rydberg states.
This gives a splitting between the two possible super-
position states of ∆± = 2Ω ∼ 10−8a.u. ∼ 70MHz, where
Ω = dtr ·Fµ is the Rabi frequency. This splitting can eas-
ily be resolved using current microwave techniques with-
out collapsing the superpostition.

In summary, we explore the possibility that giant poly-
atomic Rydberg molecules could readily form in ultra-
cold trapped mixture of atoms and molecules, from in-
teraction of Rydberg atoms and polar molecules. These
molecules which form in double wells contain dipole con-
figurations which can be coherently controlled by a Ra-
man process. The dipolar interaction of two polarized
giant Rydberg molecule could be coupled to the internal
superposition states of the polar molecules. Ionization
of the Rydberg atom from each L and R well can deter-
ministically measure the orientational state of the polar
molecule.
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Higher angular momentum molecules are now 
accessible

Four-horsemen of chemical bonds: (ionic, 
covalent, hydrogen, and van der Waals)

... may now have company; ultralong 
Rydberg bond
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