A perturbed Rydberg atom

H. R. Sadeghpour
ITAMP, Harvard-Smithsonian Center for Astrophysics

"This book will amaze, baffle and delight ..." - Nature

A perturbed Rydberg atom

H. R. Sadeghpour
ITAMP, Harvard-Smithsonian Center for Astrophysics

The New Quantum Universe

Tony Hey and Patrick Walters
"This book will amaze, baffle and delight ..." - Nature

Baranger ... (1958)

Impact approximation... Baranger ... (1958)

strong (but) binary interactions

Impact approximation...
 Baranger ... (1958)

strong (but) binary interactions

$$
\begin{aligned}
& I(\omega) \sim \frac{|\langle\beta| e \mathbf{r}| \alpha\rangle\left.\right|^{2}}{\left(\omega-\omega_{0}-d\right)^{2}+(\Gamma / 2+w)^{2}} \\
& \text { w-id }{ }_{\text {width }}^{\text {shitr }} \Delta_{\beta \alpha}=\hbar n\left\langle v \sigma_{\beta \alpha}\right\rangle=p \frac{\hbar\langle v\rangle}{k_{B} T}\left\langle\sigma_{\beta \alpha}\right\rangle .
\end{aligned}
$$

Impact approximation...

Baranger ... (1958)
strong (but) binary interactions

$$
\begin{aligned}
& I(\omega) \sim \frac{|\langle\beta| e \mathbf{r}| \alpha\rangle\left.\right|^{2}}{\left(\omega-\omega_{0}-d\right)^{2}+(\Gamma / 2+w)^{2}} \\
& \text { w-id }=\Delta_{\beta \alpha}=\hbar n\left\langle v \sigma_{\beta \alpha}\right\rangle=p \frac{\hbar\langle v\rangle}{k_{B} T}\left\langle\sigma_{\beta \alpha}\right\rangle
\end{aligned}
$$

$$
V(\mathbf{R}, \mathbf{r})=V_{e-A}(\mathbf{R}, \mathbf{r})+V_{p o l}(\mathbf{R}, \mathbf{r})
$$

Impact approximation...

strong (but) binary interactions

$$
\begin{aligned}
& I(\omega) \sim \frac{|\langle\beta| e \mathbf{r}| \alpha\rangle\left.\right|^{2}}{\left(\omega-\omega_{0}-d\right)^{2}+(\Gamma / 2+w)^{2}} \\
& V(\mathbf{R}, \mathbf{r})=V_{e-A}(\mathbf{R}, \mathbf{r})+V_{\text {pol }}(\mathbf{R}, \mathbf{r}) \\
& V_{\mathrm{pol}}(\boldsymbol{R}, \boldsymbol{r})=-\frac{\alpha}{2 R^{4}}+\alpha \frac{R^{2}-(\boldsymbol{R} \cdot \boldsymbol{r})}{R^{3}|\boldsymbol{R}-\boldsymbol{r}|^{3}}-\frac{\alpha}{2|\boldsymbol{R}-\boldsymbol{r}|^{4}} \\
& V_{e-A}(\mathbf{R}, \mathbf{r})=V_{\beta_{0}} \delta(\mathbf{r}-\mathbf{R})-\frac{\alpha_{A}}{2|\mathbf{r}-\mathbf{R}|^{4}}
\end{aligned}
$$

Fermi pseudopotential

Fermi observed that how Rydberg lines shifted depended on the species.... species-dependent scattering length

Contact interaction (Nuovo Cimento 11, 157(1934) pressure broadening and shift

Fermi pseudopotential

Fermi observed that how Rydberg lines shifted depended on the species.... species-dependent scattering length

Contact interaction (Nuovo Cimento 11, 157(1934) pressure broadening and shift
$V_{e^{-}-A}(\mathbf{r}, \mathbf{R})=V_{0} \delta(\mathbf{r}-\mathbf{R})=2 \pi a_{T}[k(R)] \delta(\mathbf{r}-\mathbf{R})$

Fermi pseudopotential

Fermi observed that how Rydberg lines shifted depended on the species.... species-dependent scattering length

Contact interaction (Nuovo Cimento 11, 157(1934) pressure broadening and shift

$$
V_{e^{-}-A}(\mathbf{r}, \mathbf{R})=V_{0} \delta(\mathbf{r}-\mathbf{R})=2 \pi a_{T}[k(R)] \delta(\mathbf{r}-\mathbf{R})
$$

$$
\frac{1}{2} k^{2}(R)=-\frac{1}{2 n^{2}}+\frac{1}{R}
$$

Fermi pseudopotential

Fermi observed that how Rydberg lines shifted depended on the species.... species-dependent scattering length

Contact interaction (Nuovo Cimento 11, 157(1934) pressure broadening and shift
$V_{e^{--A}}(\mathbf{r}, \mathbf{R})=V_{0} \delta(\mathbf{r}-\mathbf{R})=2 \pi a_{T}[k(R)] \delta(\mathbf{r}-\mathbf{R})$

$$
\frac{1}{2} k^{2}(R)=-\frac{1}{2 n^{2}}+\frac{1}{R}
$$

$U(R)=2 \pi \frac{\hbar^{2}}{m} a|\Psi(\mathbf{R})|^{2}$

$$
a_{T}[k]=-\tan \delta_{0}^{T}(k) / k
$$

zero-range e^{-}scattering leads to long-range molecular binding

Energy-dependent scattering length

Energy-dependent scattering length

$$
V_{e^{-}-A}(\mathbf{r}, \mathbf{R})=V_{0} \delta(\mathbf{r}-\mathbf{R})=2 \pi a_{T}[k(R)] \delta(\mathbf{r}-\mathbf{R})
$$

scattering phase shifts

scattering phase shifts

scattering phase shifts

$e^{-}-\mathrm{Rb}(5 \mathrm{~s})$ phaseshifts

Alkali metals in ${ }^{3} \mathrm{~S}_{\mathrm{e}}$: scattering length --- all negative; form molecular Rydberg levels

Alkali metals in ${ }^{1} \mathrm{~S}_{\mathrm{e}}$: scattering length --- all positive; $\mathrm{a}_{\mathrm{T}}(\mathrm{Rb})=0.2 \mathrm{a}_{0}$

$$
V_{e^{-}-A}(\mathbf{r}, \mathbf{R})=V_{0} \delta(\mathbf{r}-\mathbf{R})
$$

scattering phase shifts

$\mathrm{e}^{-}-\mathrm{Rb}(5 \mathrm{~s})$ phaseshifts

Alkali metals in ${ }^{3} \mathrm{~S}_{\mathrm{e}}$: scattering length --- all negative; form molecular Rydberg levels

Alkali metals in ${ }^{1} \mathrm{~S}_{\mathrm{e}}$: scattering length --- all positive; $\mathrm{a}_{\mathrm{T}}(\mathrm{Rb})=0.2 \mathrm{a}_{0}$

e^{-}- Alkaline-earth $\left({ }^{1} \mathrm{Se}\right)$ elastic phase shift

$$
\begin{aligned}
& \mathrm{a}[0](\mathrm{Mg})=-2.5 \mathrm{a}_{0} \\
& \mathrm{a}[0](\mathrm{Ca})=-12 \mathrm{a}_{0} \\
& \mathrm{a}[0](\mathrm{Sr})=-18 \mathrm{a}_{0}
\end{aligned}
$$

R-matrix calculations
Bartschat + Sadeghpour (2003)

e^{-}- Alkaline-earth $\left({ }^{1} \mathrm{Se}\right)$ elastic phase shift

$$
\begin{aligned}
& \mathrm{a}[0](\mathrm{Mg})=-2.5 \mathrm{a}_{0} \\
& \mathrm{a}[0](\mathrm{Ca})=-12 \mathrm{a}_{0} \\
& \mathrm{a}[0](\mathrm{Sr})=-18 \mathrm{a}_{0}
\end{aligned}
$$

R-matrix calculations
Bartschat + Sadeghpour (2003)
s-wave e^{-}scattering ${ }^{3} \sum_{\Sigma}{ }^{3} \Pi$
p -wave e^{-}scattering

Born-Oppenheimer Rydberg molecular potentials

$\begin{array}{ll}\text { s-wave e- scattering } & { }^{3} \Sigma \\ \text { p-wave e- scattering } & { }^{3} \Sigma{ }^{3} \Pi\end{array}$

Born-Oppenheimer Rydberg molecular potentials

$\begin{array}{ll}\text { s-wave e- scattering } & { }^{3} \Sigma \\ \text { p-wave e- scattering } & { }^{3} \Sigma{ }^{3} \Pi\end{array}$

Born-Oppenheimer Rydberg molecular potentials

$\begin{array}{ll}\text { s-wave e- scattering } & { }^{3} \Sigma \\ \text { p-wave e- scattering } & { }^{3} \Sigma{ }^{3} \Pi\end{array}$

LiHe potentials - Jeung PRA 1999 undulations in BO potentials

Born-Oppenheimer Rydberg molecular potentials

$\begin{array}{lll}\text { s-wave e- scattering } & { }^{3} \Sigma \\ \text { p-wave e- scattering } & { }^{3} \Sigma & \\ & \end{array}$
$U_{n}(R)=-\frac{1}{2 n^{2}}+2 \pi a_{T}[k(R)]\left|\psi_{n d 0}(\mathbf{R})\right|^{2}$

LiHe potentials - Jeung PRA 1999 undulations in BO potentials

Experimental Verification of Minima in Excited Long-Range Rydberg States of $\mathbf{R} \mathbf{b}_{\mathbf{2}}$

Chris H. Greene, ${ }^{1}$ Edward L. Hamilton, ${ }^{2}$ Heather Crowell, ${ }^{3}$ Cedomil Vadla, ${ }^{4}$ and Kay Niemax ${ }^{5}$
${ }^{1}$ Department of Physics and JILA, University of Colorado, Boulder, Colorado 80309-0440, USA ${ }^{2}$ Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, USA ${ }^{3}$ Department of Chemistry and JILA, University of Colorado, Boulder, Colorado 80309-0440, USA Institute of Physics, Bijenicka 46, 10000 Zagreb, Croatia
${ }^{5}$ ISAS-Institute for Analytical Sciences at the University of Dortmund, Bunsen-Kirchhoff-Str. 11, D-44139, Dortmund, Germany (Received 1 September 2006; published 8 December 2006)
Recent theoretical studies with alkali atoms A^{*} excited to high Rydberg states predicted the existence of Itra-long-range molecular bound states. Such excited dimers have large electric dipole moments which ultra-long-range molecular bound states. Such excited dimers have large electric dipole moments which, in combination with their long radiative lifetimes, make them excellent candidates for manipulation in
applications. This Letter reports on experimental investigations of the self-broadening of Rb principal series lines, which revealed multiple satellites in the line wings. The positions of the satellites agree quantitatively with theoretically predicted minima in the excited long-range Rydberg states of $R b_{2}$.

Experimental Verification of Minima in Excited Long-Range Rydberg States of $\mathbf{R} \mathbf{b}_{\mathbf{2}}$

Chris H. Greene, ${ }^{1}$ Edward L. Hamilton, ${ }^{2}$ Heather Crowell, ${ }^{3}$ Cedomil Vadla, ${ }^{4}$ and Kay Niemax ${ }^{5}$
${ }^{1}$ Department of Physics and JILA, University of Colorado, Boulder, Colorado 80309-0440, USA
${ }^{2}$ Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, USA
${ }^{3}$ Department of Chemistry and JILA, University of Colorado, Boulder, Colorado 80309-0440, USA
Institute of Physics, Bijenicka 46, 10000 Zagreb, Croatia
${ }^{5}$ ISAS-Institute for Analytical Sciences at the University of Dortmund, Bunsen-Kirchhoff-Str. 11, D-44139, Dortmund, Germany (Received 1 September 2006; published 8 December 2006)
Recent theoretical studies with alkali atoms A^{*} excited to high Rydberg states predicted the existence of ltra-long-range molecular bound states. Such excited dimers have large electric dipole moments which, ultra-long-range molecular bound states. Such excited dimers have large electric dipole moments which, applications. This Letter reports on experimental investigations of the self-broadening of Rb principal series lines, which revealed multiple satellites in the line wings. The positions of the satellites agree quantitatively with theoretically predicted minima in the excited long-range Rydberg states of $R b_{2}$.

Beyond s-wave ...

$$
\begin{aligned}
& <k_{f}|V(\mathbf{r}-\mathbf{R})| k_{i}>=-\frac{2 \pi}{k} \sum_{l}(2 l+1) \tan \left(\delta_{l}\right) P_{l}\left(k_{i} \cdot k_{f}\right) \\
& <j|V(\mathbf{r}-\mathbf{R})| i>=-\frac{2 \pi}{k} \sum_{l}(2 l+1) \tan \left(\delta_{l}\right) \Psi_{j}^{*}(\mathbf{R}) \Psi_{i}(\mathbf{R}) P_{l}\left(\nabla^{\prime} \cdot \nabla / k^{2}\right)
\end{aligned}
$$

Beyond s-wave ...

$$
\begin{aligned}
& <k_{f}|V(\mathbf{r}-\mathbf{R})| k_{i}>=-\frac{2 \pi}{k} \sum_{l}(2 l+1) \tan \left(\delta_{l}\right) P_{l}\left(k_{i} \cdot k_{f}\right) \\
& <j|V(\mathbf{r}-\mathbf{R})| i>=-\frac{2 \pi}{k} \sum_{l}(2 l+1) \tan \left(\delta_{l}\right) \Psi_{j}^{*}(\mathbf{R}) \Psi_{i}(\mathbf{R}) P_{l}\left(\nabla^{\prime} \cdot \nabla / k^{2}\right)
\end{aligned}
$$

$$
V_{S}(\vec{r}, \vec{R})=2 \pi A_{T}[k(R)] \delta(\vec{r}-\vec{R}) \quad A_{T}=-\tan \delta_{0}^{T} / k
$$

Beyond s-wave ...

$$
\begin{aligned}
& \left\langle k_{f}\right| V(\mathbf{r}-\mathbf{R})\left|k_{i}\right\rangle=-\frac{2 \pi}{k} \sum_{l}(2 l+1) \tan \left(\delta_{l}\right) P_{l}\left(k_{i} \cdot k_{f}\right) \\
& \langle j| V(\mathbf{r}-\mathbf{R})|i\rangle=-\frac{2 \pi}{k} \sum_{l}(2 l+1) \tan \left(\delta_{l}\right) \Psi_{j}^{*}(\mathbf{R}) \Psi_{i}(\mathbf{R}) P_{l}\left(\nabla^{\prime} \cdot \nabla / k^{2}\right) \\
& V_{s}(\vec{r}, \vec{R})=2 \pi A_{T}[k(R)] \delta(\vec{r}-\vec{R}) \quad A_{T}=-\tan \delta_{0}^{T} / k \\
& \left\langle\Psi_{1}\right| V_{p}\left|\Psi_{2}\right\rangle=-\frac{6 \pi \tan \delta_{1}^{T}}{k^{3}(R)} \vec{\nabla} \Psi_{1}(\vec{R}) \cdot \vec{\nabla}^{\prime} \Psi_{2}(\vec{R})
\end{aligned}
$$

Weibin numerical tour-de-force

Exotic molecules?

$$
\begin{gathered}
\mathbf{R b}(5 \mathbf{s})+\mathbf{R b}(\mathbf{n s}) ; \mu_{s}=3.13 \\
\mathbf{R b}(5 \mathrm{~s})+\mathbf{R b}\left(\mathbf{n P I}_{1 / 2,3 / 2)}\right) ; \mu_{p}=1.67 \\
\mathbf{R b}(5 \mathbf{s})+\mathbf{R b}\left(\mathbf{n d}_{3 / 2,5 / 2}\right) ; \mu_{d}=1.35 \\
U_{n}(R)=-\frac{1}{2 n^{2}}+2 \pi a_{T}[k(R)]\left|\psi_{n d 0}(\mathbf{R})\right|^{2} \\
50
\end{gathered}
$$

Exotic molecules?

$\mathrm{Rb}(5 \mathrm{~s})+\mathrm{Rb}(\mathrm{ns}) ; \mu_{s}=3.13$
$\mathbf{R b}(5 \mathrm{~s})+\mathbf{R b}(\mathrm{np} / / 2,3 / 2) ; \mu_{p}=1.67$
$U_{n}(R)=-\frac{1}{2 n^{2}}+2 \pi a_{T}[k(R)] \sum_{l=l_{\text {min }}}^{n-1} \frac{2 l+1}{4 \pi}\left|R_{n l}(R)\right|^{2}$
$\operatorname{Rb}(5 \mathbf{s})+\operatorname{Rb}\left(\mathbf{n d}_{3 / 2,5 / 2}\right) ; \mu_{d}=1.35$
$U_{n}(R)=-\frac{1}{2 n^{2}}+2 \pi a_{T}[k(R)]\left|\psi_{n d 0}(\mathbf{R})\right|^{2}$

$\operatorname{Rb}(5 \mathbf{s})+\operatorname{Rb}(\mathbf{n l}>2) ; \quad \mu_{d} \sim 0$

Exotic molecules?

$\mathrm{Rb}(5 \mathrm{~s})+\mathrm{Rb}(\mathrm{ns}) ; \quad \mu_{s}=3.13$
$\operatorname{Rb}(5 \mathrm{~s})+\operatorname{Rb}(\mathrm{nP} / / 2,3 / 2) ; \mu_{p}=1.67$

$$
U_{n}(R)=-\frac{1}{2 n^{2}}+2 \pi a_{T}[k(R)] \sum_{l=l_{\text {min }}}^{n-1} \frac{2 l+1}{4 \pi}\left|R_{n l}(R)\right|^{2}
$$

$\operatorname{Rb}(5 \mathbf{s})+\operatorname{Rb}\left(\mathbf{n d}_{3 / 2,5 / 2}\right) ; \mu_{d}=1.35$

$$
U_{n}(R)=-\frac{1}{2 n^{2}}+2 \pi a_{T}[k(R)]\left|\psi_{n d 0}(\mathbf{R})\right|^{2}
$$

$$
\operatorname{Rb}(5 \mathbf{s})+\mathrm{Rb}(\mathbf{n} \mid>2) ; \quad \mu_{d} \sim 0
$$

s-wave

Exotic molecules?

$\mathrm{Rb}(5 \mathrm{~s})+\mathrm{Rb}(\mathrm{ns}) ; \mu_{s}=3.13$
$\mathbf{R b}(5 \mathrm{~s})+\mathbf{R b}(\mathbf{n p} / / 2,3 / 2) ; \mu_{p}=1.67$
$\operatorname{Rb}(5 \mathbf{s})+\operatorname{Rb}(\mathbf{n l}>2) ; \quad \mu_{d} \sim 0$
$\operatorname{Rb}(5 \mathbf{s})+\operatorname{Rb}\left(\mathbf{n d}_{3 / 2,5 / 2}\right) ; \mu_{d}=1.35$

$$
U_{n}(R)=-\frac{1}{2 n^{2}}+2 \pi a_{T}[k(R)]\left|\psi_{n d 0}(\mathbf{R})\right|^{2}
$$

Exotic molecules?

$\mathrm{Rb}(5 \mathrm{~s})+\mathrm{Rb}(\mathrm{ns}) ; \quad \mu_{s}=3.13$
$\mathbf{R b}(5 \mathrm{~s})+\mathbf{R b}(\mathbf{n p} / / 2,3 / 2) ; \mu_{p}=1.67$
$\operatorname{Rb}(5 \mathbf{s})+\operatorname{Rb}(\mathbf{n l}>2) ; \quad \mu_{d} \sim 0$
$\operatorname{Rb}(5 \mathbf{s})+\operatorname{Rb}\left(\mathbf{n d}_{3 / 2,5 / 2}\right) ; \mu_{d}=1.35$
$U_{n}(R)=-\frac{1}{2 n^{2}}+2 \pi a_{T}[k(R)]\left|\psi_{n d 0}(\mathbf{R})\right|^{2}$

$$
U_{n}(R)=-\frac{1}{2 n^{2}}+2 \pi a_{T}[k(R)] \sum_{l=l_{\text {min }}}^{n-1} \frac{2 l+1}{4 \pi}\left|R_{n l}(R)\right|^{2}
$$

s-wave

$$
\left\langle\Psi_{1}\right| V_{p}\left|\Psi_{2}\right\rangle=-\frac{6 \pi \tan \delta_{1}^{T}}{k^{3}(R)} \vec{\nabla} \Psi_{1}(\vec{R}) \cdot \vec{\nabla}^{\prime} \Psi_{2}(\vec{R})
$$

p-wave

Exotic molecules?

$\mathrm{Rb}(5 \mathrm{~s})+\mathrm{Rb}(\mathrm{ns}) ; \quad \mu_{s}=3.13$
$\mathbf{R b}(5 \mathrm{~s})+\mathbf{R b}(\mathrm{np} / / 2,3 / 2) ; \mu_{p}=1.67$
$\operatorname{Rb}(5 \mathbf{s})+\operatorname{Rb}(\mathbf{n l}>2) ; \quad \mu_{d} \sim 0$
$\operatorname{Rb}(5 \mathbf{s})+\operatorname{Rb}\left(\mathbf{n d}_{3 / 2,5 / 2}\right) ; \mu_{d}=1.35$
$U_{n}(R)=-\frac{1}{2 n^{2}}+2 \pi a_{T}[k(R)]\left|\psi_{n d 0}(\mathbf{R})\right|^{2}$

$$
U_{n}(R)=-\frac{1}{2 n^{2}}+2 \pi a_{T}[k(R)] \sum_{l=l_{\text {min }}}^{n-1} \frac{2 l+1}{4 \pi}\left|R_{n l}(R)\right|^{2}
$$

s-wave

$$
\left\langle\Psi_{1}\right| V_{p}\left|\Psi_{2}\right\rangle=-\frac{6 \pi \tan \delta_{1}^{T}}{k^{3}(R)} \vec{\nabla} \Psi_{1}(\vec{R}) \cdot \vec{\nabla}^{\prime} \Psi_{2}(\vec{R})
$$

p-wave

$$
H=\frac{1}{2} \mathbf{p}^{2}+V(\mathbf{r})+\frac{1}{2} \mathbf{B} \cdot \mathbf{L}+\frac{1}{8}[\mathbf{B} \times \mathbf{r}]^{2}+2 \pi A_{T}[k(R)] \delta(\mathbf{r}-\mathbf{R})
$$

Lesanovsky et al. (2005)

Magnetized trilobites

$H=\frac{1}{2} \mathbf{p}^{2}+V(\mathbf{r})+\frac{1}{2} \mathbf{B} \cdot \mathbf{L}+\frac{1}{8}[\mathbf{B} \times \mathbf{r}]^{2}+2 \pi A_{T}[k(R)] \delta(\mathbf{r}-\mathbf{R})$ $\beta=\frac{\pi}{2}-\cos ^{-1}[\hat{B} \cdot \hat{R}]$
Lesanovsky et al. (2005)

Three cases:

Three cases:

a case of

no dipole... well!

Three cases:

a case of
no dipole... well!

... a case of
butterflies!
large dipole

Three cases:

a case of
... and a case
of trilobites!
... a case of
butterflies!
no dipole... well! and even larger dipole

Stark-spectrum

substracting atomic Stark-shift

Switching gear ...

... no longer short range scattering length picture does not hold
e^{-}- dipole interaction:

$$
\begin{array}{r}
\lambda(\lambda+1) / R^{2}=(a-1 / 4) / R^{2} \\
a>a_{c}=0.639 \text { a.u. }=\text { I.63 D } \ldots . \text { Fermi-Teller dipole }
\end{array}
$$

... e^{-}- binds to dipole (supercritical dipole) ... negative ion forms

Switching gear ...

... no longer short range scattering length picture does not hold

e^{-}- dipole interaction:

$$
\begin{array}{r}
\lambda(\lambda+1) / R^{2}=(a-1 / 4) / R^{2} \\
a>a_{c}=0.639 \text { a.u. }=1.63 \mathrm{D} \text {.... Fermi-Teller dipole }
\end{array}
$$

Seth Rittenhouse... (last week)
... e^{-}- binds to dipole (supercritical dipole) ... negative ion forms

$$
H=-\frac{\hbar^{2}}{2 \mu} \nabla^{2}+\langle n l m| V_{e d}(\vec{R}-\vec{r})|n l m\rangle-\frac{\vec{d} \cdot \vec{R}}{R^{3}}
$$

Switching gear ...

... no longer short range scattering length picture does not hold
e^{-}- dipole interaction:

$$
\begin{array}{r}
\lambda(\lambda+1) / R^{2}=(a-1 / 4) / R^{2} \\
a>a_{c}=0.639 \text { a.u. }=1.63 \mathrm{D} \ldots . \text { Fermi-Teller dipole }
\end{array}
$$

Seth Rittenhouse... (last week)
... e^{-}- binds to dipole (supercritical dipole) ... negative ion forms

$$
H=-\frac{\hbar^{2}}{2 \mu} \nabla^{2}+\langle n l m| V_{e d}(\vec{R}-\vec{r})|n l m\rangle-\frac{\vec{d} \cdot \vec{R}}{R^{3}}
$$

- longest range interaction in cold atom physics
- anisotropic interaction

... Of dipole scattering and bound states

$$
\phi\left(k_{n}, \alpha_{n}\right)=\tan ^{-1}\left[-\frac{\tan \left[\alpha_{n} \ln \left(k_{n} / 2\right)+\chi_{\alpha}\right]}{\tanh \left(\pi \alpha_{n} / 2\right)}\right.
$$

... Of dipole scattering and bound states

$$
\begin{aligned}
& \phi\left(k_{n}, \alpha_{n}\right)=\tan ^{-1}\left[-\frac{\tan \left[\alpha_{n} \ln \left(k_{n} / 2\right)+\chi_{\alpha}\right]}{\tanh \left(\pi \alpha_{n} / 2\right)}\right. \\
& \chi_{\alpha}=\arg \left[\Gamma\left(1-i \alpha_{n}\right)\right], \alpha_{n}=\left(a_{n}-\frac{1}{4}\right)^{1 / 2} \\
& \text { Exponential convergence of bound states } \\
& \epsilon^{(m)}=\epsilon^{(0)} \exp (-2 m \pi / \alpha)
\end{aligned}
$$

... Of dipole scattering and bound states

$$
\begin{aligned}
& \phi\left(k_{n}, \alpha_{n}\right)=\tan ^{-1}\left[-\frac{\tan \left[\alpha_{n} \ln \left(k_{n} / 2\right)+\chi_{\alpha}\right]}{\tanh \left(\pi \alpha_{n} / 2\right)} \text { (} \chi_{\alpha}=\arg \left[\Gamma\left(1-i \alpha_{n}\right)\right], \alpha_{n}=\left(a_{n}-\frac{1}{4}\right)^{1 / 2},\right.
\end{aligned}
$$

Dissociative electron attachment to $\mathrm{CH}_{3} \mathrm{Br}$ (Gallup + Fabrikant 2007)

... large two-body scattering length (no binding)
... Entirely different physics, but with the same long-range interaction... Efimov physics
$a / R^{2} \quad \epsilon^{(m)}=\epsilon^{(0)} \exp \left(-2 m \pi / s_{0}\right) \quad{ }_{s 0}=1.0062378$
... large two-body scattering length (no binding)

Universality of few-body physics large twobody interactions and few-body binding
... Entirely different physics, but with the same long-range interaction... Efimov physics

$$
a / R^{2} \quad \epsilon^{(m)}=\epsilon^{(0)} \exp \left(-2 m \pi / s_{0}\right) \quad{ }_{s 0} 0=1.0062378
$$

... large two-body scattering length (no binding)

Universality of few-body physics large twobody interactions and few-body binding

Greene, Nat. Phys. (2009) and Phys.Today (2010)

Hulet et al, Science (2009)

von Stecher et al. (2009)

Hulet et al, Science (2009)

Λ - doublet molecules (OH, CH) molecules with small rotational constants ($\mathrm{KRb}, \mathrm{RbCs}$)
Λ - doublet molecules (OH, CH) molecules with small rotational constants ($\mathrm{KRb}, \mathrm{RbCs}$)

$$
H_{\Lambda}=\left(\begin{array}{cc}
-Q & -\Delta / 2 \\
-\Delta / 2 & \text { two-level system }
\end{array}\right)
$$

Λ - doublet molecules (OH, CH) molecules with small rotational constants ($\mathrm{KRb}, \mathrm{RbCs}$)

$$
H_{\Lambda}=\left(\begin{array}{cc}
-Q & -\Delta / 2 \\
-\Delta / 2 & Q
\end{array}\right)
$$

$$
V_{\lambda}(R)=d\left[E_{c}-\sqrt{\left(E_{\lambda}(R)-\frac{1}{R^{2}}\right)^{2}+E_{c}^{2}}\right]
$$

$$
E_{c}=10^{-7} \text { a.u. } \sim 500 \mathrm{~V} / \mathrm{cm}
$$

Rittenhouse \& Sadeghpour, PRL 2010
non-adiabatic terms

$$
\left\langle\lambda_{2}\right|\left|\frac{\partial}{\partial R} \lambda_{1}(R)\right\rangle=\sum_{l, l^{\prime}}\left\langle n l^{\prime} m\right||n l m\rangle a_{n l^{\prime} m}^{\lambda_{2} *}(R) a_{n l m}^{\lambda_{1} \prime}(R)
$$

Coherent control of molecular orientation

Coherent control of molecular orientation

on-resonance coherent Raman transition

Coherent control of molecular orientation

on-resonance coherent Raman transition

Coherent control of molecular orientation

on-resonance coherent Raman transition

Coherent control of molecular orientation

on-resonance coherent Raman transition

Coherent control
 of molecular orientation

$\mathrm{OH}:$

$$
\begin{array}{r}
\Delta_{\Lambda}=1.7 \mathrm{GHz} \\
d=1.68 D
\end{array}
$$

CH :

$$
\Delta_{\Lambda}=3.03 \mathrm{GHz}
$$

$$
d=1.46 D
$$

OD:

$$
\begin{array}{r}
\Delta_{\Lambda}=0.5 \mathrm{GHz} \\
d=1.60 \mathrm{D}
\end{array}
$$

on-resonance coherent Raman transition CD:
$\Delta_{\Lambda}=1.22 \mathrm{GHz}$
$d=1.46 D$

Coherent control of molecular orientation

$$
\begin{aligned}
& \mathrm{OH}: \\
& \Delta_{\Lambda}=1.7 \mathrm{GHz} \\
& d=1.68 D \\
& \mathrm{CH} \text { : } \\
& \Delta_{\Lambda}=3.03 \mathrm{GHz} \\
& d=1.46 D \\
& \text { OD: } \\
& \Delta_{\Lambda}=0.5 \mathrm{GHz} \\
& d=1.60 \mathrm{D}
\end{aligned}
$$

on-resonance coherent Raman transition CD:
$\Delta_{\Lambda}=1.22 \mathrm{GHz}$
$d=1.46 \mathrm{D}$

Higher angular momentum molecules are now accessible

Four-horsemen of chemical bonds: (ionic, covalent, hydrogen, and van der Waals)

... may now have company; ultralong Rydberg bond

