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The problem of information flow

Suppose we have a set of random variables         where the upper 
index refers to space and the lower index refers to time. 

In general the uncertainty or entropy of a variable for a given 
spatial location will be be time dependent  but may also depend on 
the time evolution of the random variables at other spatial 
locations. 

Conceptually we shall consider the information flow between two 
spatial locations to be the time rate of change in entropy or 
uncertainty  at a particular location due to the influence of another 
spatial location. If all spatial locations evolve independently then 
the information flow within the system is zero. In most interesting 
dynamical systems however this will not be the case.

The motivation for studying this is that uncertainty created at one 
location may influence uncertainty at another location at a later 
time. This has clear implications for the problem of prediction.
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Intuitively defined measures of transfer

Problem studied first by physicists in the 1980s. Kaneko (1986) studied the 
propagation of perturbations in simple non-linear dynamical systems using a 
''moving frame'' or co-moving Lyupanov exponent. Maximization of this showed the 
prefered velocity of growing perturbations. Since regular Lyupanov exponents are 
often related to entropy production it was natural to try to find an information 
theoretic counterpart for co-moving exponents. This turned out empirically and in 
the systems studied, to be the time lagged mutual information of random variables: 
  

Which has the natural velocity scale   

The lagged mutual entropy turned out to be maximized when this velocity scale 
matched that which maximized the co-moving Lyupanov exponent. 
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Intuitively defined measures of transfer

In addition to this match of physical propagation scales, mutual 
information has an appealing intepretation as the reduction in 
uncertainty of        due to perfect knowledge of        i.e. roughly 
speaking, the contribution of uncertainty in the former due to 
uncertainty in the latter.  

This measure of information flow was further verified as physically 
plausible in more complex and realistic dynamical systems by 
Vastano and Swinney (1988). It was however shown to give 
misleading results in certain pathological situations by Schreiber 
(1990). In particular when both         and        are subjected to a 
synchronized source of uncertainty then unphysical transfers are 
possibly indicated by the lagged mutual information. This is 
somewhat analogous to over interpreting a correlation as causitive. 
Note that the mutual information reduces to a simple function of 
correlation in the case that the distributions are Gaussian.
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Intuitively defined measures of transfer

Schreiber (2000) suggested a new information theoretic measure of flow which 
overcame the problem of lack of causality identified in his 1990 study. He 
considered the situation where each spatial location was a Markov process of 
order q. Thus the probability function at any particular point depends only on the 
values for the previous q random variables. In such a situation there can, by 
construction, be no information flow between spatial points. He then tested the 
deviation from this null hypothesis using a (conditional) relative entropy 
functional. For an order 1 Markov process this transfer entropy is defined as 

Here the i and j indices refer to different spatial random variable values at 
various times given by the subscripts. This formula can be extended in an 
obvious manner to a Markov process of order q. 

Notice that from the practical computational viewpoint (to be visited shortly) the 
transfer entropy (TE) is defined with respect to trivariate distributions whereas 
the lagged mutual information functional is defined with respect to bivariate 
distributions. The order q TE is defined on distributions of dimension q+2.  



  

Somewhat more formal approaches

There is something a little unsatisfying about the intuitive approaches proposed 
above in that they do not stem from a governing global flow equation for 
uncertainty. Motivated by this Liang and Kleeman (2005) explored a different 
somewhat more formal approach. Suppose we have a 2D autonomous system 
given by 

From the associated Liouville equation we can easily derive an equation for the 
evolution of the total entropy of the system

Where

Thus the evolution of entropy is controlled by the expected (globally averaged) 
contraction or expansion of phase space namely            



  

Somewhat more formal approaches

The evolution of the marginal distribution           can be derived easily by 
integrating the original Liouville equation in the      direction and from that 
it is easy to derive the evolution equation for the corresponding marginal 
entropy 

Now if the random variable       were to evolve in isolation then its entropy 
should satisfy the modified evolution equation

Thus it seems reasonable to identify the difference 

with the flow of uncertainty between component 2 and component 1 of 
the system.



  

Somewhat more formal approaches

The above approach has been tested in a number of simple systems and 
gives qualitatively (but not quantitatively) similar results to the transfer 
entropy of Schreiber. It has been extended to the case of n dimensions 
by Liang and Kleeman (2007a) and (2007b) using a similar entropy 
evolution philosophy. The resulting functionals become complex and the 
issue of practical computation is still being considered.

Another potentially more practical extension has been made by Majda 
and Harlim (2007) to a two component dynamical system. The two 
components of the system are allowed to have arbitrary finite dimension. 
In addition they consider the case of stochastic forcing in the underlying 
dynamical system:

   



  

Somewhat more formal approaches

Associated with this system is evidently a Fokker Planck rather than the 
simpler Liouville equation. The general idea of Liang and Kleeman 
(2005) above still goes through in a similar manner. Importantly however 
practical results are obtained for cases when the marginal distribution  

               has the form of an exponential family distribution and in 
particular when it is Gaussian  they obtain

where      is the covariance matrix of the Gaussian marginal. This 
expression is simply a series of moments with respect to the multivariate 
probability distribution and therefore amenable to practical calculation 
using ensembles. Many practical ensembles are quasi-Gaussian.

In the case that the underlying dynamical system satisfies further 
conditions which are reasonable for certain geophysical flows they are 
also able to derive a very interesting relation between information flow; 
energy flow and the rate of change of relative entropy of the marginal 
distribution with respect to its equilibrium distribution. 



  

Application to observing networks for 
prediction

Consider a situation where one wishes to reduce the uncertainty of a 
prediction at a very particular spatial location. An example might be the 
prediction (or otherwise) of a very intense storm in a significant location.

How might the uncertainty of this prediction be reduced? One strategy is 
evidently to improve the observing system which defines the initial 
conditions for the prediction. There are however usually time constraints 
involved in such an improvement. For example one might choose to send 
out an aircraft to improve observations in a ''critical'' region. But where 
might such a region be located? For hurricane prediction this is usually 
fairly obvious but for mid-latitude storms much less so.

This has led to the concept of targeted observations and much sensitivity 
analysis of the complex dynamical models underlying the atmosphere 
has been undertaken. This has often had the limitation however that it is 
linear in nature and beyond a certain prediction time frame, this is a 
highly suspect assumption (3-4 days typically). 

 

 



  

Application to observing networks for 
prediction

Information flow offers a natural way of analyzing this problem: If 
one is able to calculate the uncertainty flow from initial time spatial 
points to prediction time spatial points then it becomes clear how 
the uncertainty at the latter times may be improved by reducing the 
uncertainty at the initial time. 

Moreover if we have information on how this flow connects all 
spatial points then we can identify how the uncertainty may be 
optimally reduced at the initial time in order to reduce errors in 
predictions at particular spatial locations of interest.

Information flow calculations make no assumptions about linearity 
but do require a statistically significant number of ''ensemble'' 
predictions.

The latter restriction is important practically and requires the use of 
functionals of a low degree of multivariateness.

 



  

Application to observing networks for 
prediction

Kleeman (2007) carried out this program in a (somewhat) realistic 
model of the atmosphere using both intuitive measures (lagged 
mutual information and transfer entropy) of information flow 
discussed above. There are plans to extend the computation to the 
more formal measures later once some technical issues are 
resolved.

A T42 primitive equation dry dynamical core model with realistic 
depiction of mid-latitude jets and storms was utilized. A simple 
multivariate Gaussian distribution was assumed for initial 
conditions and sample trajectories of length 10 days generated 
using this distribution with means drawn from a very long model 
run (ergodicity is assumed). The ensembles were of size 10,000 
which enabled highly statistically significant (non-noisy) estimates 
of the information flow functionals.  



  

Application to observing networks for 
prediction



  

Application to observing networks for 
prediction



  

Application to observing networks for 
prediction. Practical issues

The ensemble sizes used above are not yet practical for a real world 
application. The ensembles are however quasi-Gaussian meaning 
that analytical expressions for the relevant functionals 
can be easily derived and used as good approximations. Since these
involve only the first two moments of the samples/ensembles much smaller 
ensembles are required (order 200 rather than 10,000).

In all practical cases there was little qualitative difference between the
two intuitive measures except for the persistence effect. This suggests 
that the theoretical debate between different flow functionals may not 
be important for this particular application. Of course in other applications
that may not be the case. This is under active current investigation.       



  

Conclusions

 Significant theoretical progress has been made in defining 
information flow. More work is still required.

 It has been shown that these concepts can be applied to the 
practical prediction problem of targetted observing networks. 
Unlike all other proposed techniques the present methods do 
not make any assumptions of linearity.

 Many other applications of this theory are potentially possible in 
other areas.
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