

Adaptive stochastic modeling using data assimilation

Cécile Penland NOAA/ESRL/PSD <u>cecile.penland@noaa.gov</u>

Jim Hansen NRL, Marine Met. Div. jim.hansen@nrlmry.navy.mil

- Model inadequacy can be reduced through an iterative approach to parameter estimation.
 - Use data assimilation to estimate statistics of stochastic parameters
 - Collaboration between process scientists and those specializing in the science of prediction.
- Biases due to insufficient resolution can be reduced through an assimilation-like process during the forecast cycle.
 - How do we use these distributions?
 - Can we get around having to rewrite the model to include stochastic parameterizations?

Proof-of-concept experiments (Hansen and Penland *Physica D* 2008)

- Experiment where system is SDE and model is DDE
 - Can we uncover correct stochasticity? (YES, with proper scaling)
 - Can we successfully use the parametric distribution in our DDE to improve forecasts? (YES, if applied as estimated)
- Experiment where system is SDE.

Quick Review of the Central Limit Theorem

$$d\mathbf{x}/dt = \varepsilon^2 \mathbf{G}(\mathbf{x}, t) + \varepsilon \mathbf{F}(\mathbf{x}, t)$$

 $\varepsilon^2 \boldsymbol{G}(\boldsymbol{x},t)$ is slow

 $\varepsilon F(x,t)$ is fast

Papanicolaou and Kohler (1974)

Choose a scaling $s = \varepsilon^2 t$: $\frac{dx}{ds} = G(x, s/\varepsilon^2) + \frac{1}{\varepsilon} F(x, s/\varepsilon^2) \quad (*)$ For simplicity, say

$$F_i(\mathbf{x}, s/\varepsilon^2) = \sum_k F_i^k(\mathbf{x}, s)\eta_k(s/\varepsilon^2)$$
 and

$$C_{km} = \int_{-\infty}^{\infty} \langle \eta_k(t)\eta_m(t'+t) \rangle dt' \equiv (\phi\phi^T)_{km}$$

$$\lim_{\substack{t \to \infty \\ \varepsilon \to 0}} (*) \to dx = G(x,s) ds + \sum_{k,\alpha} F^k(x,s) \phi_{k\alpha} \bullet dW_{\alpha}$$

(*W* is a Brownian motion; $dW \in N(0, dt)$).

System is SDE, Model is DDE

• System equations $dx = -\alpha_0 (x - y)dt$ • Model equations $\dot{x} = -\tilde{\alpha}(x - y)$ $\dot{x} = -\tilde{\alpha}(x - y)$ $\dot{y} = rx - xz - y$ dy = (rx - xz - y)dt $\dot{z} = xy - bz$ dz = (xy - bz)dt $\dot{\tilde{\alpha}} = 0$

$$\tilde{\mathbf{x}} = \left[x \ y \ z \ \tilde{\boldsymbol{\alpha}} \right]^T$$

- 1) Get "truth" by integrating using stochastic RK4 with $\Delta_s = 0.00025$, $\alpha_0 = 10$; $\alpha_S = 0.1$
- 2) Use the ensemble Kalman filter or 4-D Var to assimilate $\{x, y, z, \alpha\}$ for N_{obs}=1000 observations, each separated by an interval of τ_{obs} =0.05.
- 3) Assimilation model is the deterministic Lorenz model with a timestep $\Delta_D = 0.01$.
- 4) Size of ensemble: N_{ens}=250.
- 5) Initial guess: $\tilde{\alpha} = 11\pm0.7$

Can DA uncover the correct form of the stochasticity? - IF DONE RIGHT

Scale results with the CLT

• Note that DA doesn't estimate α_s but rather $\alpha_s \left\| \frac{dW}{dt} \right\|$

$$\frac{dx}{dt} = -\alpha_0(x-y) - \alpha_s(x-y) \circ \frac{dW}{dt}$$

- dW/dt has statistics $N(0, \frac{1}{\Delta t})$
- In the DA case, $\Delta t = \tau_{obs}$ so scale DA's est. a_s by $\sqrt{\tau_{obs}}$

$$\frac{a_{s}}{dt} \frac{dW}{dt} \sqrt{\tau_{obs}} = 0.44\sqrt{0.05} = 0.098$$

$$\alpha_{0} = 10, \ \alpha_{s} = 0.1$$

Papanicolaou and Kohler (1974)

Choose a scaling $s = \varepsilon^2 t$: $\frac{d\mathbf{x}}{ds} = \mathbf{G}(\mathbf{x}, s/\varepsilon^2) + \frac{1}{\varepsilon} \mathbf{F}(\mathbf{x}, s/\varepsilon^2) \quad (*)$ For simplicity, say $F_{i}(\boldsymbol{x}, s/\varepsilon^{2}) = \sum_{k} F_{i}^{k}(\boldsymbol{x}, s)\eta_{k}(s/\varepsilon^{2})$ and $C_{km} = \int \langle \eta_k(t)\eta_m(t'+t) \rangle dt' \equiv (\phi\phi^T)_{km}$

 $\lim_{\substack{t\to\infty\\\varepsilon\to 0}} (*) \to d\mathbf{x} = \mathbf{G}(\mathbf{x},s) ds + \sum_{k,\alpha} \mathbf{F}^k(\mathbf{x},s)\phi_{k\alpha} \bullet dW_{\alpha}$

(*W* is a Brownian motion; $dW \in N(0, dt)$).

Test of CLT scaling argument

Estimate of α_0

Estimate of α_s

How does this help us with the integration problem?

Back to stochastic Lorenz system: We have a trajectory; let's try to simulate it.

- Untuned deterministic Lorenz model using first-guess value of α_0 = 11; $\alpha_S = 0. \Delta_D = 0.01$.
- Tuned deterministic Lorenz model using assimilated value of $\alpha_0 = 10.2$; $\alpha_{\rm S} = 0. \Delta_D = 0.01$.
- SDE with assimilated values of $\alpha_0 = 10.2$; $\alpha_S = 0.098$. $\Delta_s = 0.00025$.
- Perfect model (SDE with $\alpha_0 = 10.; \alpha_S = 0.1$). $\Delta_s = 0.00025$.
- Hybrid model: Piecewise deterministic; $\alpha_0 = 10.2$; $\alpha_S = 0.44$; perturbation held constant over interval $\tau_{obs} = 0.05$. $\Delta_D = 0.01$.

Median of ensemble mean forecast distributions

10 A I

Must assess probabilistically!

10 A I

Forecast lead (units of τ_{obs})

Conclusions

- Parameter estimation efforts can be brought to bear on the structural model inadequacy problem, particularly resolution problems.
- Such efforts to reduce model inadequacy ultimately lead to a sensible way to account for model inadequacy stochastically.
- Synoptic time-scale "stochasticity" via parameter estimation does a great job accounting for model inadequacy during forecasting
 - A LOT of research necessary (e.g., one-sided distributions?)
 - Efforts underway to apply to an NWP model.