
Cécile Penland

NOAA/ESRL/PSD

cecile.penland@noaa.gov

Jim Hansen

NRL, Marine Met. Div.

jim.hansen@nrlmry.navy.mil

Adaptive stochastic modeling 

using data assimilation

mailto:cecile.penland@noaa.gov
mailto:jim.hansen@nrlmry.navy.mil


Approach

• Model inadequacy can be reduced through an iterative 

approach to parameter estimation.

– Use data assimilation to estimate statistics of stochastic 

parameters

– Collaboration between process scientists and those specializing 

in the science of prediction.

• Biases due to insufficient resolution can be reduced 

through an assimilation-like process during the forecast 

cycle.

– How do we use these distributions?

– Can we get around having to rewrite the model to include 

stochastic parameterizations?



Ewald, Penland and Temam (2004)



Proof-of-concept experiments
(Hansen and Penland Physica D 2008)

• Experiment where system is SDE and model is 

DDE

– Can we uncover correct stochasticity? (YES, with 

proper scaling)

– Can we successfully use the parametric distribution in 

our DDE to improve forecasts? (YES, if applied as 

estimated)

• Experiment where system is SDE.



Quick Review of the Central Limit Theorem

dx/dt = e2 G(x,t) + eF(x,t) 

e2 G(x,t) is slow

e F(x,t) is fast



Choose a scaling s = e2t:
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(W is a Brownian motion; dW  N(0,dt)).

(*)

Papanicolaou and Kohler (1974) 



System is SDE, Model is DDE

• System equations • Model equations
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1) Get “truth” by integrating using stochastic RK4 with  s = 

0.00025, 0 = 10; S = 0.1

2) Use the ensemble Kalman filter or 4-D Var to assimilate 

{x,y,z,} for Nobs=1000 observations, each separated by 

an interval of obs=0.05.  

3) Assimilation model is the deterministic Lorenz model 

with a timestep  D = 0.01.

4) Size of ensemble: Nens=250.

5) Initial guess:        = 11±0.7



Can DA uncover the correct form 

of the stochasticity?   - IF DONE RIGHT

• Ensemble 4d-Var • EnKF

p
a

ra
m

e
te

r

p
a

ra
m

e
te

r

time time

10.08, ( ) 0.36std   10.02, ( ) 0.44std  

0 10, 0.1s  



Scale results with the CLT
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dW/dt has statistics

Note that DA doesn’t estimate s but rather s 
dt

dW



Choose a scaling s = e2t:
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(W is a Brownian motion; dW  N(0,dt)).
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Papanicolaou and Kohler (1974) 



Estimate of Estimate of 
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Test of CLT scaling argument



How does this help us with the integration problem?

Back to stochastic Lorenz system: We have a trajectory; 

let’s try to simulate it.

• Untuned deterministic Lorenz model using first-guess value of 0 

= 11; S = 0.  D = 0.01.

• Tuned deterministic Lorenz model using assimilated value of 0 = 
10.2; S = 0.  D = 0.01.

• SDE with assimilated values of 0 = 10.2; S = 0.098.  s = 
0.00025.

• Perfect model (SDE with 0 = 10.; S = 0.1).  s = 0.00025.

• Hybrid model: Piecewise deterministic; 0 = 10.2; S = 0.44; 
perturbation held constant over interval obs=0.05.  D = 0.01.



Median of ensemble mean forecast distributions
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Conclusions

• Parameter estimation efforts can be brought to bear on 
the structural model inadequacy problem, particularly 
resolution problems.

• Such efforts to reduce model inadequacy ultimately lead 
to a sensible way to account for model inadequacy 
stochastically.

• Synoptic time-scale “stochasticity” via parameter 
estimation does a great job accounting for model 
inadequacy during forecasting
– A LOT of research necessary (e.g., one-sided distributions?)

– Efforts underway to apply to an NWP model.


