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There is (and, as far as we know, there will always be) uncertainty on the future state of the
atmosphere. That uncertainty varies from day to day, or at least from week to week.

That uncertainty is (and, as far as we know, will always be) large enough so that the question of
quantifying it a priori seems worth investigating (for instance, in anticipation of situations where
a user must make a decision that can involve a financial risk in relation with weather).

For some reason, uncertainty is conveniently described by probability distributions (don’t know
too well why, but it works; see also Jaynes, E. T. (edited by G. L. Bretthorst), 2007, Probability Theory: The Logic of

Science, Cambridge University Press, Cambridge, United Kingdom, 727 pp., ISBN 978-0-521-59271-0.).

Prediction of uncertainty is a problem in bayesian estimation.

Determine the conditional probability distribution for the state of the system, knowing everything
we know (unambiguously defined if a prior probability distribution is defined; see Tarantola, 2005, Inverse Problem Theory
and Methods for Model Parameter Estimation, Society for Industrial and Applied Mathematics, Philadelphia, USA, 342 pp.,
ISBN 0-89871-572-5).

Remark. Problem is the same for evaluation of the present state of the system, and for
assimilation of observations.
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Bayesian estimation is however impossible in its general
theoretical form in meteorological or oceanographical
practice because

• It is impossible to explicitly describe a probability
distribution in a space with dimension even as low as n ≈ 103,
not to speak of the dimension  n ≈ 106-8 of present Numerical
Weather Prediction models.

• Probability distribution of errors on data very poorly known
(model errors in particular).
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This has led a number of meteorological services to develop Ensemble
Prediction Systems (EPSs), which produce an ensemble of estimates of
the future state of the flow, which are meant to sample the corresponding
conditional probability distribution.

Global Ensemble Prediction Systems have been run operationally at

- National Centers for Environmental Prediction (NCEP) since 1992
- European Centre for Medium-range Weather Forecasts (ECMWF) since
1992
- Meteorological Service of Canada (MSC) since 1998
- …

In addition, Regional Ensemble Prediction Systems, intended at more or
less local applications (e. g., prediction of meteorological conditions at an
airport) are run in a number of meteorological services (UK, France, Italy,
…)
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More recently, set-up of

THORPEX INTERACTIVE GRAND GLOBAL ENSEMBLE (TIGGE)

About 20 meteorological services contribute their ensemble predictions.
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Ensembles are basically produced from runs of a numerical
deterministic model of the flow that differ through initial
conditions, but also through specific features in the forecast model
(‘stochastic physics’ at ECMWF). Multi-model ensembles, in
which runs from different models are merged together in the same
ensemble, are more and more frequent (TIGGE).

Initial conditions are defined through various procedures : singular
modes (ECMWF), Ensemble Transform Kalman Filter (ETKF)
(NCEP), ‘perturbed observation’ assimilation (MSC).

Size of ensembles typically lies in the range N ~ 10 - 100





ECMWF, Technical Report 499, 2006 
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My point of view

o Ensemble estimation (either prediction or assimilation) is of a
different essence than deterministic estimation in that the object to
be estimated (basically a probability or a probability distribution) is
not better known a posteriori than it was a priori (in fact, that
object has no objective existence and cannot be possibly observed
at all)

o As a consequence, validation of ensemble estimation can only be
statistical, and it is meaningless (except in limit cases, as when the
estimated probability distribution has a very narrow spread, and the
verifying observation falls within the predicted spread, or on the
contrary when the verifying observation falls well outside the
spread of the estimated probability distribution) to speak of the
quality of ensemble estimations on a case-to-case basis
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Question

• The purpose of ensemble estimation being to
obtain a sample of the underlying conditional
probability distribution for the state of the
flow, how can one objectively (and
quantitatively) evaluate the degree to which
that purpose has been achieved ?
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Statistical consistency between prediction and observation

Rain must occur with frequency 40% in the circumstances when it has been
predicted to occur with probability 40%.

Observed frequency of occurrence p‘(p) of event, given that it has been predicted
to occur with probability p, must be equal to p.

For any p,  p‘(p) = p

Reliability

 More generally, frequency distribution of observation F‘(F), given that
probability distribution F has been predicted, must be equal to F.

For any F,  F‘(F) = F



Reliability diagramme, NCEP, event T850 > Tc - 4C, 2-day range,
Northern Atlantic Ocean, December 1998 - February 1999



Rank histograms, T850, Northern Atlantic, winter 1998-99

Top panels: ECMWF, bottom panels: NMC (from Candille, Doctoral Dissertation, 2003)
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More generally, for a given scalar variable, Reduced Centred Random Variable
(RCRV, Candille et al., 2006)

where ξ is verifying observation, and µ and σ are respectively the expectation and
the standard deviation of the predicted probability distribution.

Over a large number of realizations of a reliable probabilistic prediction system

E(s) = 0         ,       E(s2) = 1
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Richardson et al., 2008, ECMWF Technical Memorandum 578
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The degree of reliability of an Ensemble Prediction System is measured
by a number of non equivalent objective scores : reliability component
of Brier and Brier-like scores, rank histograms, Reduced Centred
Variable, …
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If sample of realizations of the system is large enough, a posteriori calibration is
in principle possible

F  ⇒  F‘(F)

‘Experience shows that, when you predict F, reality is distributed
according to F’. So, next time you predict F, I will predict F’’

This makes system reliable. Lack of reliability, under the hypothesis of
stationarity of statistics, can be corrected for to the same degree it can be diagnosed.

But that is obviously not sufficient to ensure system is practically useful. A
system which always predicts climatological frequency of occurrence (or
climatological frequency distribution) is reliable in the sense that has just
been defined, but nevertheless totally useless.
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Second  attribute

o ‘Resolution’ (also called ‘sharpness’)

Reliably predicted probabilities F‘(F) are distinctly different from climatology.

Measured by resolution component of Brier and Brier-like scores, ROC curve area,
information content, …



23

Brier Skill Score and components, ECMWF, event T850 > Tc - 2C,
Northern Atlantic Ocean, December 1998 - February 1999
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It is the conjunction of reliability and resolution that makes the
value of a probabilistic estimation system. Provided a large enough
validation sample is available, each of these qualities can be
objectively and quantitatively measured by a number of different,
not exactly equivalent, scores.
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A highly desirable property of scores is that they are proper. A
proper score is a score that cannot be cheated, i. e., a score that, for
given probability distribution G of the verifying observation,
assumes its optimum value when the predicted probability
distribution is equal to G.

A proper score that is of the form (J. Bröcker, L. Smith)

E[S(F, ξ)]

where S is a function of F and of the verifying observation ξ, can
be decomposed into a reliability and a resolution component (like
the Brier score).
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Definition of initial ensembles

Different basic approaches

o Singular modes (ECMWF)

Singular modes are perturbations that amplify most rapidly in the tangent linear approximation
over a given period of time. ECMWF uses a combination of ‘evolved’ singular vectors defined
over the last 48 hours before forecast, and of ‘future’ singular vectors determined over the first
48 hours of the forecast period. Mixture of past and future.

o ‘Bred’ modes, then  Ensemble Transform Kalman Filter (NCEP)

Bred modes are modes that result from integrations performed in parallel with the assimilation
process. Come entirely from the past.

ETKF. A form of ensemble assimilation. Comes entirely from the past.

o ‘Perturbed observation’ method (formerly at MSC)

A form of ensemble assimilation. Comes entirely from the past.
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L. Descamps (LMD)

Systematic comparison of different approaches, on simulated data,
in as clean conditions as possible.



28Descamps and Talagrand, Mon. Wea. Rev., 2007
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Arpège model (Météo-France)
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Table 1: AREA UNDER THE ROC CURVE AT VARIOUS LEAD TIMES FOR EVENT EV1
AND THE THREE METHODS (500-hPa geopotential).

                   Lead time (days)   PO       BM      SV
                          0                    0 .98    0 .95   0 .93
                          1                    0 .94    0 .90   0 .88
                          2                    0 .91    0 .87   0 .85
                          3                    0 .87    0 .83   0 .82
                          4                    0 .82    0 .77   0 .76
                          5                    0. 76    0. 71   0. 71

Table 2: SAME AS Table 1, BUT FOR EVENT EV2.

                   Lead time (days)   PO       BM      SV
                          0                    0 .97    0 .94   0 .91
                          1                    0 .92    0 .88   0 .86
                          2                    0 .89    0 .84   0 .82
                          3                    0 .84    0 .78   0 .77
                          4                    0 .78    0 .72   0 .72
                          5                    0 .71    0 .67   0 .66

Arpège model, Météo-France



Descamps and Talagrand, 2008
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Conclusion. If ensemble predictions are assessed by the accuracy
with which they sample the future uncertainty on the state of the
atmosphere, then the best initial conditions are those that best
sample the initial uncertainty. Any anticipation on the future
evolution of the flow is useless for the definition of the initial
conditions. And diagnostics intended at identifying past unstable
modes of the flow as such are not as efficient as ensemble
assimilation.

Conclusion in agreement with other studies (Anderson, MWR,
1997, Hamill et al., MWR, 2000, Wang and Bishop, JAS, 2003,
Bowler, Tellus, 2006).

On the other hand, Buizza (IUGG, Perugia, 2007) has presented
results of comparisons made at ECMWF, in which the best results
are obtained with SVs.
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Size of Ensembles ?

Given the choice, is it better to improve the quality of the forecast
model, or to increase the size of the predicted ensembles ?

o Observed fact : in ensemble prediction, present scores saturate for
value of ensemble size N in the range 30-50, independently of
quality of score.
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Impact of ensemble size on Brier Skill Score
ECMWF, event T850 > Tc Northern Hemisphere
(Talagrand et al., ECMWF, 1999)

Theoretical estimate (raw Brier score)
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Questions

o If we take, say, N = 200, which user will ever care whether the probability
for rain for to-morrow is 123/200 rather 124/200 ?

o And even if a user cares, what is the size of the verifying sample that is
necessary for checking the reliability of a probability forecast of, say, 1/N
for a given event E?

Answer. Assume one 10-day forecast every day. E must have occurred α
N/10 times, where α is of the order of a few units, before reliability can be
reliably assessed.

If event occurs ~ 4 times a year, you must wait 10 years for N = 100, and
50 years for N = 500 (α = 4).

Conclusion. Reliable large-N probabilistic prediction of (even moderately)
rare events is simply impossible.
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 Question
Why do scores saturate for N ≈ 30-50 ? Explanations that have been suggested

     (i) Saturation is determined by the number of unstable modes in the system. Situation
might be different with mesoscale ensemble prediction.

    (ii) Validation sample is simply not large enough.

    (iii) Scores have been implemented so far on probabilisic predictions of events or one-
dimensional variables (e. g., temperature at a given point). Situation might be
different for multivariate probability distributions (but then, problem with size of
verification sample).

   (iv) Probability distributions (in the case of one-dimensional variables) are most often
unimodal. Situation might be different for multimodal probability distributions (as
produced for instance by multi-model ensembles).

In any case, problem of size of verifying sample will remain, even if it can be
mitigated to some extent by using reanalyses or reforecasts for validation.
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Is it possible to objectively validate multi-dimensional probabilistic predictions ?

Consider the case of prediction of 500-hPa winter geopotential over the Northern Atlantic
Ocean, (10-80W, 20-70N) over a 5x5-degree2 grid ⇒165 gridpoints.

In order to validate probabilistic prediction, it is in principle necessary to partition predicted
probability distributions into classes, and to check reliability for each class.

Assume N = 5, and partitioning is done for each gridpoint on the basis of L = 2 thresholds.
Number of ways of positioning N values with respect to L thresholds. Binomial coefficient

This is equal to 21 for N = 5 and L = 2 , which leads to

21165 ≈ 10218

possible probability distributions.

! ! 
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Is it possible to objectively validate multi-dimensional probabilistic
predictions (continuation) ?

21165 ≈ 10218 possible probability distributions.

To be put in balance with number of available realizations of the
prediction system. Let us assume 150 realizations can be obtained
every winter. After 3 years (by which time system will have started
evolving), this gives the ridiculously small number of 450
realizations.

! ! 
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Is it possible to objectively validate multi-dimensional probabilistic
predictions (continuation) ?

For a more moderate example, consider long-range (e. g.,  monthly or
seasonal) probabilistic prediction of weather regimes (still for the winter
Northern Atlantic). Vautard (1990) has identified four different weather
regimes, with lifetimes of between one and two weeks. The probabilistic
prediction is then for a four-outcome event. With N = 5-sized ensembles,
this gives 56 possible distributions of probabilities.

In view of the lifetimes of the regimes, there is no point in making more
than one forecast per week. That would make 60 forecasts over a 3-year
period. Hardly sufficient for accurate validation.

! ! 



40Pappenberger et al., 2008, Geophys. Res. Lett.



41

Conclusions

Reliability and resolution (sharpness) are the attributes that make the
quality of a probabilistic prediction system. These are routinely measured
in weather forecasting by a number of scores, each of which has its own
particular significance. Other scores may be useful.

Strong limitations exist as to what can be achieved in practice by ensemble
weather prediction. It is not clear whether there can be any gain in using
ensemble sizes beyond N ≈ 30-50. And, even if there is, the unavoidably
(relatively) small size of the verifying sample will often make it
impossible to objectively evaluate the gain.

Much work remains to be done as to the optimal use of available resources
for probabilistic weather prediction.
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Conclusions (2)

Present situation is somewhat hybrid, the predicted ensemble being a kind of
auxiliary to a statistically more accurate higher resolution forecast. This is actually
cause of confusion, when the high resolution forecast disagrees from a large subset
of the ensemble.

How to include the high resolution forecast into the definition of the predicted
probability distribution ?

Must we aim at a situation where the predicted object will be a probability
distribution ?


