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The basics: probability densities

P(u)

Actual measurement




Data assimilation: general formulation
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Challenges in applying Bayes theorem

* Observation errors? (Gaussian or not? Correlations?)

A

p(c)
= concentration >0

0 C
e Relation observations and model variables?

(e.g. Radiation at one wavelength is influenced by several

processes, so several different model variables)



Challenges in applying Bayes theorem

* Model errors? (Size/shape/biases)

Should come from neglected physics, but what
about neglected turbulence???

* Present-day supercomputers are too small
(For NWP: joint pdf of 10,000,000 variables so about

10010,000,000 pag| numbers)

* Present-day supercomputers are too slow



Where are we today?

All present-day data-assimilation systems are
based on linearizations:

(Ensemble) Kalman filter: assumes Gaussian
pdf’s

4DVar: assumes Gaussian pdf for initial
condition and observations (no model errors)

Representer method: as 4DVar but with
Gaussian model errors

Combinations of these



Where do we want to go?

e Represent pdf by an ensemble of model
states

e Fully nonlinear
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How do we get there? Particle filter?

pa (d) py (V)
| pa (dlY) py (V) dip

l Use ensemble p(v) = Z ~0( — ;)

— N
P Q/)ld sz w %

py (V]d) =

with pd (d[vi)
Z D i Pa (d];)




What are these weights?

* The weight w_i is the pdf of the observations
given the model state /.

 For M independent Gaussian distributed
observation errors:
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Particle Filter degeneracy:
resampling

e With each new set of observations the old
weights are multiplied with the new weights.

* Very soon only one particle has all the
weight...

e Solution:

Resampling: duplicate high-weight particles
are abandon low-weight particles



Particle filter degeneracy (cont’d)

For large-dimensional systems with lots of
independent observations the weights vary
too much:

M - 2-
s o 1 exp [ L= o)

2
i 2 0;

A small difference in the one-observation

weights is raised to power M.
(w(1)_1=0.1 w(1)_2=0.09 M=100 w_1/w_2=37648)



Potential solutions

* Increase effective ensemble size by e.g.
localization. (Not easy due to resampling)



Solution used in
Ensemble Kalman Filter

Local updating



Potential solutions

ncrease effective ensemble size by e.g.
ocalization. (Not easy due to resampling)

Particles should explore the ‘local attractor’
more efficiently.



Experiment Lorenz 1963

de = o(y— z)dt + d,
dy = (px—xz—y)dt+dp,
dz (xy — Bz)dt + dj.

Model parameters:
dt =0.01 At=40dt p=28 oc=10
Statistical parameters:

Oobs — \/5 0dp — \/5 Oinit — \/5

Measure X only

3 =8/3



Particle filter with resampling
20 particles




Particle filter with proposal density

Stochastic model  dv) = f(v)dt + d3
Proposed stochastic model:

dy = f(¢)dt +dp" — K(d— H(v))

Leads to particle filter with weights
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Meaning of the transition densities

p(U7 ¥ ") = pldf;)

= the probability of this specific value for the model error.

For Gaussian model errors we find:

X exp [—% <¢f — P+ f(w?‘l)dt) Q™" <¢zn — 7 4 f(wfb_l)dt)]

A similar expression is found for the proposal transition




Particle filter with proposal density
3 particles X variable
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Particle filter with proposal density
3 particles, Y variable (not observed)
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Remarks

* Note the freedom in the proposal density!

* Some localization through the model error
covariance.

* |t is possible to chose the proposal density such
that all posterior weight equal.



Equal weights

The weights can be written as:
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This quadratic equation has an infinite number of solutions.
We just have to find one ...



Equal weights (cont’d)

Take the weight as small as possible:
Minimizing the weights as function of the state at n gives:

OH (¥}

RN — HM)) = 0
Son B = HW)

Q7' +ai ! -

Which, for linear measurement operators reduces to:

Ui = (1= QH [HQH" + R™")(Qa;™" + QH" R™'d)

And make weights equal by some iterative method...



Preliminary example
large system

Two-layer primitive equation
model of a double gyre.

Lx=2000 km, Ly = 4000 km
Deltax=Deltay = 20 km
H1=1000 m, H2=4000 m
Wind profile 0.6 cos (y/L)

Observations
sea-surface height
Deltax = 80 km,
s=2cm

Interval: 1 days
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Statistics

About 100,000 variables
About 1100 observations each day
Initial error sigma 10 m

Model error sigma 1 m in layer thickness each
BC time step

256 particles



Quality of the particle filter
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Intelligent monitoring



Relative entropy

* For a highly-nonlinear system the analysis is a
pdf, not a single best estimate.

* A measure of the information content of a pdf
is given by the relative entropy:

Elplp] = /p 1og< w;)m




Mutual information

Mutual information measures the change in
entropy of a pdf:

p(¥)
p(i|d)

M1 = Elp(v)] - Elp(¢|d)] = - [ p(]d) log A

Use a particle filter:

MI =Y w;log Nw,




Mutual Information

* Or, more generally, the mutual information of a
new set of extra observations given the existing
ones:

MI = Z w,; " (log w; " — log wOld)

1

* Theoretical bounds:
- no influence (no change in weights) M/ =0

- maximal influence (one weight is 1) M/ = log N



Example with Lorenz 1963 model
100 particles (log N=4.6)

Prior pdf Posterior pdf
Mutual Information is 0.6984



Same example, another
observation time

Prior pdf Posterior pdf
Mutual Information is 1.7307



Conclusions particle filter

Use of proposal density helps avoiding
degeneracy.

Some localization through the model error
covariance.

It is possible to chose the proposal density such
that all posterior weights are equal.

Particle filters start to look promising for large-
scale models.



Conclusions observation influence

 Mutual Information is a fully nonlinear
measure for observation influence

* [tis extremely easy to calculate for a particle
filter



