

The correction of forecast errors based on MOS: The impact of initial condition and model errors

S. Vannitsem

Institut Royal Météorologique de Belgique

Dresden, July 30, 2009

Outline

- 1. Introduction
- 2. The MOS technique
- 3. The role of initial and model errors: a dynamical view
- 4. Analysis of operational forecasts
- 5. A unified MOS scheme for deterministic AND ensemble forecasts: EVMOS
- 6. Conclusions and perspectives

LEGEND	:	eps p01	 eps p05	eps p09	 eps p13
	ens mean ———	eps p02	eps p06	 eps p10	 eps p14
	oper GFS	eps p03	 eps p07	 eps p11	
	eps ctl ———	eps pO4	 eps pOB	 eps p12	

ens run for 00Z 11Dec2006 valid 06Z11DEC2006 522 and 564 height contours at 500—hPa, 1x1 degree resolution

LEGEND: -	eps p01	 eps p05	 eps p09	 eps p13
ens mean —	— eps p02	eps p06	 eps p10	 eps p14
oper GFS —	eps p03	 eps p07	 eps p11	
eps ctl —	eps p04	 eps pO8	 eps p12	

ens run for 00Z 11Dec2006 valid 12Z18DEC2006 522 and 564 height contours at 500-hPa, 1x1 degree resolution

The quality of atmospheric forecasts decreases as a function of time

ens run for 00Z 11Dec2006 valid 12Z15DEC2006 522 and 564 height contours at 500-hPa, 1x1 degree resolution

NCEP ensemble forecasts

Model error dynamics

Eta model runs with Two different convective schemes

Two sources of errors affecting the forecasts and the data assimilation process:

-initial condition errors-model errors

See C. Nicolis, Rui A. P. Perdigao, and S. Vannitsem Dynamics of Prediction Errors under the Combined Effect of Initial Condition and Model Errors, *Journal of the Atmospheric Sciences*, 66, 766–778, 2009.

How can we improve the forecast quality (Besides the improvement of the model and the observational system)?

Use of techniques to post-process the forecasts in order to improve their quality.

What is corrected by the post-processing method?

The Model Output Statistics technique

Post-processing of forecasts in order to improve their quality based on information gathered from past forecasts

- 'Deterministic' approach: Linear techniques (Classical MOS, perfect prog), adaptative Kalman filtering. Ref: Glahn and Lowry, 1972, JAM, 11, 1203; Wilks, 2006, Academic Press;....
- 'Deterministic' approach: Nonlinear techniques (Neural networks, nonlinear fits). Ref: Marzban, 2003, MWR, 131, 1103; Casaioli et al, 2003, NPG, 10, 373;....
- Probabilistic approaches: correction of the (deterministic) precipitation forecasts. Ref: Lemcke and Kruizinga, 1988, MWR, 116, 1077;....
- (True) Probabilistic approaches: Calibration of the ensemble forecasts. Ref: Roulston and Smith, 2003, Tellus, 55A, 16; Gneiting et al, 2005, MWR, 133, 1098; Wilks, 2006, MA, 13, 243; Hamill and Wilks, 2007, MWR, 135, 2379;.....

The Linear MOS technique

Linear regression between a set of observables of forecasts and observations

$$X_{c}(t) = \alpha(t) + \sum_{i=1}^{n} \beta_{i}(t)V_{i}(t)$$

$$T=0$$

$$T=t$$
Model

$$J(t) = \sum_{i=1}^{M} (X_{c,k}(t) - X_{k}(t))^{2}$$
M past forecasts

Doolity

Minimization of J(t)

n=1
$$\alpha(t) = \langle X(t) \rangle - \beta(t) \langle V(t) \rangle$$

 $\beta(t) = \frac{\langle X(t)V(t) \rangle - \langle X(t) \rangle \langle V(t) \rangle}{\langle V(t)^2 \rangle - \langle V(t) \rangle^2}$

k=1

Example of fit: 2-m Temperature, Uccle

Training:

2 Summer seasons 2002-2003

Verification:

2004-2005

Properties of the MOS forecast

$$\langle X_{c}(t) \rangle = \langle X(t) \rangle$$

$$\sigma_{c}^{2}(t) = \langle (X_{c}(t) - \langle X(t) \rangle)^{2} \rangle = \frac{C(X(t), V(t))^{2}}{\sigma_{V(t)}^{2} \sigma_{X}^{2}} \sigma_{X}^{2} = \beta(t)^{2} \sigma_{V(t)}^{2}$$

$$Progressive decrease$$

The mean square error

$$<(X_{c}(t) - X(t))^{2} > = <(V(t) - X(t))^{2} > -(\sigma_{c}(t) - \sigma_{v}(t))^{2} - (< X(t) > - < V(t) >)^{2}$$

Drift correction

Variability correction

Short term dynamics of MOS forecasts (Formalism based on Nicolis, 2004, JAS)

The real system

$$\frac{d\vec{X}}{dt} = \vec{F}(\vec{X}, \vec{Y}, \{\mu\})$$
$$\frac{d\vec{Y}}{dt} = \vec{S}(\vec{X}, \vec{Y}, \{\lambda\})$$

Variables not described by the model

 \vec{X} and \vec{V} span the same phase space

The model

$$\frac{\mathrm{d}\vec{V}}{\mathrm{d}t} = \vec{G}(\vec{V}, \{\mu'\})$$

Formal sols

$$\vec{V}(t) = \vec{V}(0) + \int_{0}^{t} d\tau \vec{G}(\vec{V}(\tau), \{\mu'\})$$
$$\vec{X}(t) = \vec{X}(0) + \int_{0}^{t} d\tau \vec{F}(\vec{X}(\tau), \vec{Y}(\tau), \{\mu\})$$

Typical initial errors

$$\vec{V}(0) = \vec{X}(0) + \vec{\varepsilon}(0) \longrightarrow \qquad Gaus \text{ random noise} \\ + \qquad \vec{\varepsilon} = <\vec{\varepsilon} > +\sigma_{\varepsilon}N(0,1) \\ \text{Systematic error}$$

$$(\sigma_C(t) - \sigma_V(t))^2 = S_0 + S_1 t + \frac{1}{2}S_2 t^2 + O(t^3)$$

 $S_{1} \propto 2\sigma_{\varepsilon(0)}^{2} C(V(0), G(\vec{X}(0)) - F(\vec{X}(0)))$ $S_{2} \propto 2C(V(0), G(\vec{X}(0)) - F(\vec{X}(0))^{2}$ $C(V(0), G(\vec{X}(0)) - F(\vec{X}(0))) = \langle V(0)(G - F) \rangle$

- < V(0) > < G - F >

FOR 2 PREDICTORS: C(V1,G-F), C(V2,G-F)

$$(\langle X(t) \rangle - \langle V(t) \rangle)^{2} = S'_{0} + S'_{1}t + \frac{1}{2}S'_{2}t^{2} + O(t^{3})$$

$$S_{2}' = 2(\langle F(\vec{X}(0)) - G(\vec{V}(0)) \rangle)^{2} + 2(\langle X(0) \rangle - \langle V(0) \rangle)(\langle \frac{d}{dt}(F(\vec{X}(0)) - G(\vec{V}(0))) \Big|_{0} \rangle)$$

Summary

A. Correction of initial condition errors

- Systematic initial error is corrected.

- Random initial errors are only partially corrected.

B. Correction of model errors

- The systematic part is corrected.

- The time-dependent part can be corrected provided that the covariance of the model error with the predictors is high.

The Lorenz system

$$\frac{dx}{dt} = -y^2 - z^2 - ax + aF$$
$$\frac{dy}{dt} = xy - bxz - y + G$$
$$\frac{dz}{dt} = -bxy + xz - z$$

Chaotic for a=0.25, b=6, F=16, G=3

- Initial condition errors: N(0,s), s small
- Model errors (parametric error on a, b, F or G)

Results obtained with 100,000 realizations starting from different initial conditions

The Lorenz system (continued)

The Lorenz system (continued)

Partial conclusions

- IC not well corrected by MOS
- MOS can correct model errors when model predictors well chosen

Application to the ECMWF forecasting system: temperature

Data: temperature for the period December 1 2001 to November 30 2005

- Training period: December 1 2001 to November 30 2003
- Independent evaluation period: December 1 2003 to November 30 2005
- -Temperature 500 hPa, 850 hPa -Temperature at 2 meters

 \rightarrow Evaluation on a grid covering Belgium (verification using the set of analyses)

(52 N, 2 E) to (49 N, 7 E)

 \rightarrow Evaluation at some synoptic stations: model forecast given by the closest gridpoint

Uccle-Ukkel

Other stations

New Linear MOS

Intermediate cost function:

One 'free' parameter:

$$\lambda = \frac{\sigma_{\delta}^2}{\sigma_{\kappa}^2} \text{ fixed to } \frac{\sigma_V^2}{\sigma_X^2}$$

 $\mathbf{V}(\mathbf{A})$

1.1

Needs some knowledge about the sources of errors

Minimization

$$\beta(t) = \sqrt{\frac{\langle X(t)^2 \rangle - \langle X(t) \rangle^2}{\langle V(t)^2 \rangle - \langle V(t) \rangle^2}} = \sqrt{\frac{\sigma_X^2(t)}{\sigma_V^2(t)}}$$

O(1) , $\mathbf{U}(1)$

Statistical Properties

$$< X_{C}(t) > = < X(t) >$$

$$\sigma_{C}^{2}(t) = < (X_{C}(t) - < X(t) >)^{2} > = \beta(t)^{2} \sigma_{V(t)}^{2} = \sigma_{X(t)}^{2}$$

And the third moment,

$$<(X_{c}(t)-)^{3}>=\beta^{3}(t)<(V(t)-)^{3}>$$

This development can be extended to two predictors.

Vannitsem, S., A unified Linear Model Output Statistics scheme for both deterministic and ensemble forecasts. Accepted in *Quart. J. Roy. Met. Soc.*, 2009

MOS at Station 'Uccle'.

Application to an operational ensemble: ECMWF, Winter, Uccle

2 meter Temperature

Conclusions on MOS

A dynamical analysis of the MOS correction has been undertaken with emphasis on the correction of

> -initial condition errors -Model errors

Both partly corrected but correction more sensitive to model errors.

One central quantity

 $C(V(0), G(\vec{X}(0)) - F(\vec{X}(0)))$

An additional model observable can improve considerably the correction if proportional to G-F

For the ECMWF deterministic forecast:

TMP 2m

- Substantial corrections with MOS with 1 observable
- MOS with 2 observables:
 - In the central part of Belgium: Tmp 850 hPa On the coast: Sensible Heat Flux

TMP 850 hPa

- No correction. -> Mainly initial condition errors

More infos:

Vannitsem S. and C. Nicolis, Dynamical properties of Model Output Statistics forecasts. Mon. Wea. Rev., 136, 405-419, 2008.

Vannitsem S., Dynamical properties of MOS forecasts. Analysis of the ECMWF operational forecasting system. Weather and Forecasting, 23, 1032-1043, 2008.

Correction of Ensemble forecasts based on EVMOS

A unified Scheme for both deterministic and ensemble forecasts is proposed, based on the assumption that the forecast displays errors.

-Do not damp the ensemble spread anymore.

-The correction provides a mean and a variability in agreement with the observations

-The scheme can be trained on the control forecast only.

References:

Vannitsem, S., A unified Linear Model Output Statistics scheme for both deterministic and ensemble forecasts. Accepted in *Quart. J. Roy. Met. Soc.*, 2009