

Dynamics and Statistics in Weather and Climate Focus Workshop 29 – 31 July 2009

Statistical and numerical downscaling approaches over southern South America

Sebastian Wagner GKSS Research Center, Geesthacht

Outline

Motivation Introduction of the climate in southern South America Statistical Downscaling **Dynamical/Numerical Downscaling** Summary and Outlook

_Motivation I

Problem:

Scale gap between skilful scale of GCM and local scale of proxy/climate impact analysis

Solution approach:

Downscaling of large scale GCM output

Statistical transfer function

T30 (ECHAM4)

Numerical regional model

_Assumption for statistical downscaling:

Validity of transfer function in statistical downscaling model

_How can the validity of this assumption be tested ?

1st: carry out statistical downscaling setup by observations and downscale GCM output

2nd: carry out numerical downscaling with same GCM used for 1st

Introduction to the climate of southern South America

→ Potrok Aike [PTA] Crater Lake

Introduction to the climate of southern South America

Strong mean westerly flow

Precipitation 'hot spots' due to rare station availability and interpolation of station precipitation Precipitation–circulation relationship at Lake PTA: weakened westerlies lead to increased precipitation

Simulation with GCM of

Pre-Industrial climate [PI, 1750 AD]
Mid-Holocene climate [MH, 6000 BP]
(orbital, solar, GHG)

Difference in shortwave insolation between Mid-Holocene and pre-industrial:

Increased seasonal insolation cycle

Principal Component Regression (PCR):

$$PREC(t) = a_0 + \sum_{k=1}^{K} a_k^{SLP} c_k^{SLP}(t) + \varepsilon(t)$$

Estimation of principal components by means of EOF

$$X = \sum_{j=1}^{j} c_j \vec{e}^j$$

$$c_{j} = X^{T} \cdot e_{j} \qquad \qquad c_{j} \cdot c_{k} = 0 \mid j \neq k$$

Estimation of GCM-modelled principal components c_i

$$c_{j}^{mo} = X^{T,mo} \cdot e_{j}^{obs}$$

_Statistical downscaling

Climate-circulation regression coefficients a_i for JJA for observations:

Physical plausibility with precipitation at Lake site PTA

Model skill: DJF JJA r_{crossval} +0.2 +0.44

_Statistical downscaling

_Result for precipitation at Lake [PTA] in south-eastern Patagonia for difference mid-Holocene – pre-industrial:

Reduced precipitation during DJF

[mean MH-PI: -1.4%]

Increased precipitation during JJA

[mean MH-PI: +7.7%]

Confidence intervals:

$$2\sigma = 1.98 * \sqrt{\operatorname{var}(\varepsilon)}$$

_Numerical downscaling

Orography [0.44x0.44] CCLM and mean precipitation for JJA:

Regional model shows longitudinal band of increased precipitation along Andes mountains – difference to gridded obs. VASCLIMO data [cf. p.

_Numerical downscaling

Test of circulation-climate relationship for the mid-Holocene:

$$a_1^{m} = +0.36$$

EOF1_CCLM_MH

$$a_2^{m} = +0.2$$

EOF2_CCLM_MH

Basic atm. circ. patterns and links with precipitation at PTA are well reproduced by regional model [cf. p. 9]

_Numerical downscaling

Mean precipitation differences between Precipitation MH-PI:

Complex spatial pattern with opposite signs for JJA and DJF

Physical plausibility of the statistical model

Less is more: fewer predictors but stable model

Residuals for estimation of uncertainty due to statistical model

_Numerical regional models for estimating spatial patterns of climate change

_Validity of assumptions in the circulation-climate relationship

Results of numerical DS are in accordance with SD

_Outlook: Quo vadis ?

_Range rather than resolution:

Sensitivity to driving GCMs

Skilful model chain:

A chain is as strong as its weakest link

Paleo-Perspective:

Revisiting of hypothesis derived from proxy

Thank you for your attention!