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Motivation

Fusing ground level ozone concentration observations with
computer deterministic model output.

Improving biased forecast.

Capturing spatio-temporal variation.

Quantifying uncertainty through Bayesian probabilistic forecast.

Producing high resolution maps.
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Forecast
EPA’s www.airnow.gov website
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Ground Level Ozone

Ground level ozone: bad health effects: primarily respiratory, lung
function, coughing, throat irritation, congestion, bronchitis,
emphysema, asthma.

Ozone is a secondary pollutant.

VOC’s (Volatile Organic Compounds) - organic gases but really
“chemicals that participate in the formation of ozone.”

Sunlight + VOC + NOx = Ozone.

Meteorological conditions - sunlight, high temperature (so
primarily from April to September), wind direction and wind speed.
High spatial-temporal correlation.
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Observations

409 spatial point locations are
in the area.

Recorded hourly.

Measured by unattended
photometers.

About 20 percent data is
missing over 15 days.

Sparse data.
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CMAQ modelling system - Computer model output

National Oceanic and Atmospheric Administration (NOAA) have
designed the Community Multi-scale Air Quality (CMAQ)
modelling system.

The model is used by Environmental Protection Agency (EPA)

CMAQ consists of a set of deterministic physical models from first
principle.

The forecasts are biased.

Computer model outputs are in grid cell, but in the real siuation,
we want point location prediction.

Uncertainty has not been taken into account.
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CMAQ
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CMAQ modules
Ching and Byun,1999
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CMAQ modules
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Problem
Daily 8-hour maximum Prediction

8-hour average ozone concentration is an important indicator for
environmental monitoring.

Measuring the daily 8-hour average maximum ozone
concentration is required by the law.

One day ahead 8-hour average maximum ozone concentration at
an arbitrary location is needed.

High resolution map can be produced from the prediction outputs.

Obtaining forecasts within few hours.
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Work done by others

Fuentes and Raftery (2005) combine the computer model and
observation by joint multivariate normal distribution.

Zimmerman and Holland (2005) use different data sources with
different measurement error and bias.

Jun and Stein (2004) compare the correlation structure of
computer model and observations.

None of them deal with space-time forecast at the same time.

The measurement is not ground truth.
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Why do we adopt Bayesian approach?

Probabilistic forecast addresses the uncertainty through
distribution (pdf).

Modelling becomes more flexible.

Linear regression model doesn’t work here, it cannot capture
spatial correlation.

The approach distinguish "ground truth", "measurement" and
"biased forecast".
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Model Structure
Historical Data Forecasts

Observation

Ground Truth

CMAQ
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Measurement Equation: Z (si , t) = O(si , t) + ǫ(si , t)

System Equation: O(si , t) = ξt + ρ O(si , t − 1) + β0 x(si , t) + η(si , t)
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Model Specification
Historical Data Forecasts

Observation

Ground Truth

CMAQ

Z (s, t)
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Measurement Equation: Z (si , t) ∼ N(O(si , t), σ2
ǫ
),

System Equation: O(t) ∼ N(ξt + ρ O(t − 1) + β0 x(t), σ2
ω
Σ),

where O(t) = (O(s1, t), . . . , O(sn, t))′,
x(t) = (x(s1, t), . . . , x(sn, t))′.
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How do we forecast?
Posterior Predictive Distribution

The posterior predictive distribution of Z (s′, t ′) is obtained by
integrating over the unknown quantities with respect to the joint
posterior distribution, i.e.,

π (Z (s′, t ′)|z) =
∫

π
(

Z (s′, t ′)|O(s′, [t ′]), σ2
ǫ

)

π (O(s′, [t ′])|θ, w)
dO(s′, [t ′]) dθ dw .

It can be done by Monte Carlo integration in the Markov chain Monte
Carlo routine.
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Prediction Maps
The 1-day ahead forecast surfaces on 11th Aug: Bayes and CMAQ
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Prediction Maps
The 1-day ahead forecast surfaces on 11th Aug: Bayes and its uncertainty
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Prediction Quality
Comparison of root mean square error (ppb) (MSE) and relative bias (ppb) (rBIAS)

RMSE rBIAS
Validation Days CMAQ Bayes CMAQ Bayes
Aug 2–9 15.15 7.47 0.1588 -0.0042
Aug 3–10 15.70 7.20 0.1687 -0.0070
Aug 4–11 16.14 8.03 0.1732 -0.0174
Aug 5–12 15.92 7.51 0.1728 -0.0215
Aug 6–13 15.51 6.53 0.1724 -0.0083
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Validation Plot
Validation plot for one day ahead forecast on 11th Aug
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Hit and error percentages for O3 exceeding 80 ppb.

Period CMAQ Hit Error Bayes Hit Error
Aug 2-9 84.76 15.24 95.12 4.88

Aug 3-10 82.20 17.80 94.24 5.76
Aug 4-11 82.05 17.95 94.36 5.64
Aug 5-12 84.78 15.22 94.92 5.08
Aug 6-13 83.92 16.08 93.97 6.03
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Extreme Value Theory Extention

Not accurate to predict high values (> 80ppb).

Non-normal distribution.

1 Measurement Equation: Z (s, t) ∼ GEV (µ(s, t), σg , ν).
2 Second Equation: µ(s, t) = O(s, t) + ǫ(s, t).
3 System Equation:

O(si , t) = ξt + ρ O(si , t − 1) + β0 x(si , t) + η(si , t).
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Validation of the upper tail on Aug 13th
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RMSE of the upper tail on Aug 13th.

Observed Value DLM(1) EVTDLM
All 6.94 7.37
> 50 7.26 7.30
> 60 7.64 7.61
> 70 8.59 8.28
> 80 10.53 9.45
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Conclusion

The forecast is consistent, more accurate, faster than running
another computer model.

Maps of probability statement could be produced.

The approach is general. We also forecast hourly data under the
same framework.

C language code is developed and a simplifed version S-plus
package for a faster hourly model has been developed.

Future work will focus on using monitoring data from different data
sources.
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Future Work

Modelling the whole USA is also needed.

Using other non-normal distributions.

Other types of spatial correlation structure could be used.

The speed of forecast could be further improved which is a
trade-off between accuracy and time.
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