Self-organization of Active Polar Rods: Self-Assembly of Microtubules and Molecular Motors

Igor Aranson With: Argonne National Laboratory

Lev Tsimring, UCSD; Dmitrii Karpeev, Argonne Jason Jia, Peter Bates, Mich State, Hans Kaper, NSF Falko Ziebert ANL Sumanth Swaminathan, NWU

Supported by US Department of Energy

Review papers

I. Aranson and Lev Tsimring, **Patterns and collective behavior in granular media: Theoretical concepts**, Rev Mod Phys, 78, 641 (2006) I. Aranson and Lev Tsimring, **Granular Patterns**, Oxford Univ Press, 2009

Outline

in-vitro experiments Micromechanical calculations Maxwell model for polar rods and granular analogy Asters and vortices

Microtubules

Very long rigid polar hollow rods (length – 5-20 microns, diameter -40 nm, Persistent length – few mm) Length varies in time due to polymerization/depolymerization of tubulin Multiple function in the cell machinery: cytoskeleton formation, cell division, cell functioning

Molecular motors-Associated Proteins

Linear motors (kinesin, dynein, myosin) cytosceleton formation, transport
 Rotary motors: (flagellar motor, F-ATPase) flagella rotation
 Nucleic acid motors: (helicase, topoisomerase) – DNA unwinding/translocation

Linear motors clusters:

Have one head and one tail, but may cluster One attached to MT Other attached to vesicles, granules, or another MT Take energy from hydrolysis of ATP Speed ~1µm/s, step length 8 nm, run length ~1µm Exert force about 6 pN

ATP – Adenosine triphosfate

ADP- Adenosine diphosphate

Dividing Cells and Mitotic Spindles

MT form cytoskeleton of dividing cells Separate chromosomes Asters: ray-like arrays of MT located around centrioles

in-vitro Self-Assembly of MT and MM

- [§] Simplified system with only few purified components
- [§] Experiments performed in 2D glass container: diameter 100 μm, height 5μm
- [§] *Controlled tubulin/motor concentrations and fixed temperature*
- [§] MT have fixed length $5\mu m$ due to fixation by taxol

Science, 292 (2001)

Patterns in MM-MT mixtures

Formation of asters, large kinesin concentration (scale 100 μ)

THE BRAT OF CHICGO

Vortex – Aster Transitions

Ncd – gluththione-S-transferase-nonclaret disjunctional fusion protein *Ncd* walks in opposite direction to kinesin

Summary of Experimental Results

Kinesin: vortices for low density of MM and asters for higher density Ncd: asters are observed for all MM densities Bundles for very high MM density, asters disappear

Possible difference between kinesin and NCD: kinesin falls off the end of MT, NCD sticks and dwells

Mechanism of Self-Organization

Motor binding to 1 MT – no effect

8

Motor binding to 2 MT – mutual orientation after interaction Zipper effect or inelastic collision

Collisions of Inelastic Grains

va & vb velocities after/before collision $\gamma=0$ – elastic collisions $\gamma=1/2$ – fully inelastic collision $\gamma=1$ – no interaction

12

Inelastic Collision of Polar Rods

Interaction of Two Microtubules

Point-wise motor at the intersection point
Rigid rods
Symmetric motor attachment
Motor moves with constant speed V
Exerts force F(V)

$$\partial_t \psi = \xi_r^{-1} S \cos \psi F$$

$$\partial_t X = \xi_{\parallel}^{-1} F,$$

$$\partial_t Y = 0.$$

I.A. & L Tsimring, PRE 2006

Solution for two rods

Motor attachment condition

Evolution of the angle

Exact solution (C=const is determined by i.c.)

Averaged angle after interaction

Inelasticity factor for two rigid rods

17

Inelasticity enhanced by flexibility

Motor released from the end

Click to edit Master text styles Second level • Third level • Fourth level • Fifth level Motor dwells at the end

Inelasticity vs flexibility and length

Effective stiffness

rđcđ yti atsden

NATIONAL

SITY OF

Molecular Dynamics Simulations of Stiff Inelastic Rods

Simple rules -rigid rods of equal length -no explicit motors

-fully inelastic collisions

- rods diffuse anisotropically in 2 dim, Dparallel=2 Dperpendic

-reorient upon collision with some probability Pon -probability of interaction depends on proximity to the end (dwelling)

Jia, Bates, Karpeev, I.A. PRE 2008

Maxwell Model for Inelastic Particles

inelastic grains

va & vb velocities after/before collision $\gamma=0$ – elastic collisions $\gamma=1/2$ – fully inelastic collision $\gamma=1$ – no interaction

Probability distributions P(v)

Collision rate g does not depend on relative velocity (Maxwell molecules) No spatial dependence D- thermal diffusion, $D \sim T$, T – temperature of heat bath Binary uncorrelated collisions

Distribution function for $\gamma = 1/2$

heat bath

Ben-Naim & Krapivsky, PRE 2000

Inelastic Collision of Polar Rods

Collision Integral

Collision Integral

- · Dr thermal rotational diffusion
- g collision efficiency (~ concentration of motors) since diffusion of motors >> diffusion of microtubules assume g=const

Kinetic Equation for $P(\varphi)$

For simplicity $\phi 0 = \pi$ Main difference – integration over a finite interval due to 2π periodicity of the angle Phase transition with the increase of g!!!

Stability of isotropic state

No preferred orientation: $P(\varphi)=P0=1/2\pi$ Small perturbations: $P(\varphi)=1/2\pi + \xi ne\lambda t + in\varphi + c.c.$ $\lambda - growth$ -rate of linear perturbations

For $g>Dr/(4/\pi-1)\approx 3.662$ Dr - disoriented state loses stability Orientation phase transition above critical motor density !!!

Macroscopic Variables

Density of MT

Average orientation $\tau = (\tau x, \tau y)$

"Complex orientation"

Fourier Expansion

Relation to observables

Asymptotic expansion for Pn ($\gamma = 1/2$)

Scaling of variables

Diffusion -Drk2 forces rapid decay higher harmonics Linear growth rates λn $\lambda 0=0$

 $\lambda n < 0$ for $|n| \ge 2$ Neglect higher harmonics

Asymptotic Landau Equation

Truncation of series for |n| > 2

Second order phase transition for $\rho > \rho c = 1/0.273 \approx 3.662$

Second order phase transition for $\rho > \rho c$

 $\rho < \rho c$ – no preferred orientation $|\boldsymbol{\tau}| \rightarrow 0$, stable point $\boldsymbol{\tau}=0$

 $\rho > \rho c$ – onset of preferred orientation $|\tau| \rightarrow const$, direction is determined by initial distribution, stable limit circle

Stationary Angular Distributions Comparison with Numerical Solution

Spatial Localization of Interaction

Interaction between rods decay with the distance Translational and rotational diffusion of rods

The Diffusion Matrix in Kirkwood Approximation

l – length of the rod, *d*- diameter, ηs – viscosity of solvent₃₆

Collision Integral

Interaction Kernel

Decays with distance between rods Depends on relative angle between rods Symmetric with respect permutation of rods

 β small for kinesin β large for NCD

Continuum Equations

prohibited by the momentum conservation 39

Asters and Vortices

For HB2 <<1 *equations split and become independent*

Without blue and red terms Eq possesses "Abrikosov Vortex Solution"

Vortices

For H=0 (no red terms) the only stable solutions $\varphi = \pm \pi/2$

-Vortex: MT circle around the center

· Liquid crystals analogy: Frank Free Energy

bend splay

penalizes splay deformations \rightarrow vortices 41

Aranson & Tsimring, PRE 2003

Asters

For $H \neq 0$ (no blue terms) the only stable solution $\varphi = 0$

No phase degeneracy:

Aster: MT directed towards the center

Vortex/Aster Solutions

For $H \neq 0$ far away from the core the distinction between vortex and aster disappears

Linear Instability of Aster

Linearized Equation for Aster

Equations solved numerically by shooting-matching method with Newton iterations

Phase Diagram

Implications of Analysis

Asters stable for large MM density Vortices stable only for low MM density No stable vortices for H>Hc for all MM density (in experiments no vortices in Ncd for all densities)

Experiment

- 2D mixture of MM & MT exhibits pattern formation
- In kinesin vortices are formed for low density of MM and asters are formed for higher density
- In Ncd only asters are observed for all MM densities

•

٠

Numerical Solution

Quasispectral Method ; 256x256 FFT harmonics Periodic boundary conditions Spontaneous creation of vortices and asters

H=0.004

Evolution of Vortices and Asters

Large anisotropy H

Small anisotropy H

Complex Ginzburg-Landau Equation Analogy

Vortex Glass State

Aster Lattice

I.A. L. Kramer, The World of the Ginzburg-Landau Equation, Rev Mod Phys, 72, 99 (2002)

Generalizations Inhomogeneous Motor Distribution m(x,y,t)

Motors move along MT and accumulate in the centers of asters and vortices $g \sim m \neq const$

additional diffusion-advection equation for motors m(x,y,t)

Generalizations

Bundling instability: high MM density

Variable MM dynamics: Accumulation of MM at asters centers

Motors Attached to Substrate

Connection to self-propelled particles, Bertin, Droz, and Gregoire, PRE 2006 Shaller et al, Nature, 2010

Rotation of vortices/Drifting domains Density depressions in center of vortices and asters

Crosslinks and formation of bundles

[•]Crosslinks result in a fast and complete alignment [•]Suppress relative sliding of filaments

F Ziebert, I.A., L Tsimring, NJP 2008

Modification of density equation due to crosslinks

Isotropic instability without crosslinks ($\eta=0$) Enhancement of density instability perp orientation of microtubules with crosslinks – bundles formation

No crosslinks $\eta=0$: *No density/orientation correlation*

With crosslinks $\eta = 1$: Polar bundles

Comparison with experiment

Model with crooslinks

Microtubules with 2 motor types Surrey et al, Science 2001

Actin- myosin mixture (Smith et al, Biophys J, 2007 Kas group)

