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Outline

in-vitro experiments 
Micromechanical calculations
Maxwell model for polar rods and granular analogy 
Asters and vortices 
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Microtubules 

Very long rigid polar hollow rods (length – 5-20 microns, 
       diameter -40 nm, Persistent length – few mm)
Length varies in time due to 
      polymerization/depolymerization of tubulin
Multiple function in the cell machinery: cytoskeleton 
     formation, cell division, cell functioning  
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Molecular motors-Associated Proteins

Linear motors clusters:
•Have one head and one tail, but may cluster
• One attached to MT

Other attached to vesicles, granules, or another MT
•Take energy from hydrolysis of ATP
•Speed ~1µm/s, step length 8 nm, run length ~1µm
•Exert force about 6 pN   
ATP – Adenosine triphosfate
ADP- Adenosine diphosphate 

• Linear motors (kinesin, dynein, myosin) cytosceleton formation, transport
• Rotary motors: (flagellar motor, F-ATPase) flagella rotation 
• Nucleic acid motors: (helicase, topoisomerase) – DNA unwinding/translocation

hydrolization
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Dividing Cells and Mitotic Spindles

MT form cytoskeleton of dividing cells 
Separate chromosomes 
Asters: ray-like arrays of MT  located around centrioles 

Aster
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§ Simplified system with only few purified components 
§ Experiments performed in 2D glass container: diameter 100 µm, 

height 5µm 
§ Controlled tubulin/motor concentrations and fixed temperature
§ MT have fixed length 5µm due to fixation  by taxol 

F. Nedelec, T. Surrey, A. Maggs, S. Leibler, 
Self-Organization of Microtubules and Motors, Nature, 389 (1997) 
T. Surray, F. Nedelec, S. Leibler & E. Karsenti, 
Physical Properties Determining Self-Organization of Motors & Microtubules, 

Science, 292 (2001)

in-vitro Self-Assembly of MT and MM

Cell with MT & MM

CCD camera
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Patterns in MM-MT mixtures 
Formation of asters, large kinesin concentration (scale 100 µ) 

100 µ
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Vortex – Aster Transitions 

Ncd – gluththione-S-transferase-nonclaret disjunctional fusion protein 
Ncd walks in opposite direction to kinesin 
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Summary of Experimental Results 

Kinesin:  vortices   for low density of MM and asters for 
higher density 
Ncd:   asters are observed for all MM densities 
Bundles for  very high MM density,  asters disappear

Possible difference between kinesin and NCD: kinesin falls 
off the end of MT, NCD sticks and dwells 
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Mechanism of Self-Organization 
Motor binding to 1 MT – no effect Motor binding to 2  MT –

mutual  orientation after interaction 

Zipper effect or inelastic collision 
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Collisions of Inelastic Grains 

v1

v2

v=(v1+v2)/2

va & vb velocities after/before  collision
γ =0 – elastic collisions
γ =1/2 – fully inelastic collision 
 γ =1 – no interaction
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Inelastic Collision of  Polar Rods 

Fully  Inelastic Collision!!!
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Interaction of Two Microtubules

•Point-wise motor at the intersection point
•Rigid rods
•Symmetric motor attachment 
•Motor moves with constant speed V
•Exerts force F(V)

I.A. & L Tsimring, PRE 2006
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Solution for two rods

Motor attachment condition

Evolution of the angle 
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Exact solution (C=const is determined by i.c.) 

Averaged angle after interaction



17

Inelasticity factor for two rigid rods
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Inelasticity enhanced by flexibility

Click to edit Master text styles
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● Fifth level

Click to edit Master text styles
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● Fourth level

● Fifth level

Motor released from  the end Motor dwells at  the end 
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Inelasticity vs flexibility and length
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Molecular Dynamics Simulations of 
Stiff Inelastic Rods 

Simple rules 
-rigid rods of equal length 
-no explicit motors
-fully inelastic collisions 
- rods diffuse anisotropically in 2 dim, Dparallel=2 

Dperpendic
-reorient upon collision with some probability Pon
-probability of interaction depends on proximity to the 

end (dwelling)
 
Jia, Bates, Karpeev, I.A. PRE 2008
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Maxwell Model for Inelastic Particles 
inelastic grains

v1

v2

v=(v1+v2)/2

va & vb velocities after/before  collision
γ =0 – elastic collisions
γ =1/2 – fully inelastic collision 
 γ =1 – no interaction
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Probability distributions P(v) 

Collision rate g does not depend on relative velocity 
(Maxwell molecules)
No spatial dependence 
D-  thermal diffusion, D ~T, T – temperature of heat bath  
Binary uncorrelated collisions 

Distribution function  for γ = 1 /2  

Ben-Naim & Krapivsky, PRE 2000

source term sink term

heat bath
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Inelastic Collision of  Polar Rods 

Fully  Inelastic Collision!!!
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Collision Integral 
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Collision Integral 

• Dr -  thermal rotational diffusion  
• g – collision efficiency (~ concentration of motors) 

since diffusion of motors >> diffusion of microtubules 
assume    g=const



26

Kinetic Equation for  P(ϕ) 

For simplicity φ0 = π
Main difference – integration over a finite interval due to 2π 
periodicity of the angle 
Phase transition with the increase of g!!!  
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Stability of isotropic state 
No preferred  orientation: P(ϕ)=P0=1/2π   
Small perturbations: P(ϕ)=1/2π+ ξneλt+inϕ+c.c. 

 λ – growth-rate of linear perturbations

For g>Dr/(4/π-1)≈3.662 Dr  - disoriented state loses stability
Orientation phase transition above critical motor density !!!  



28

Macroscopic Variables  

Density of MT

Average orientation  τ=(τx,τy)

“Complex orientation” 
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Fourier Expansion

Relation to observables
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Asymptotic  expansion for Pn   (γ =1/2)

Diffusion -Drk2 forces rapid decay higher harmonics
Linear growth rates λn

λ0=0 

      
     λn<0  for |n|≥2   Neglect higher harmonics

Scaling of variables
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Asymptotic Landau Equation

Truncation of  series for |n|>2

Second order phase transition for ρ>ρc =1/0.273≈3.662
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Second order phase transition for ρ>ρc

τy

τx

τy

τx

ρ< ρc – no preferred orientation
|τ |→ 0, stable point τ=0

ρ>ρc – onset of preferred orientation
|τ|→ const, direction is determined by 
initial distribution, stable limit circle

Compare with Hopf Bifurcation Scenario

stable circle
stable point

unstable point
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Stationary Angular Distributions 
Comparison with Numerical Solution
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Spatial Localization of Interaction

Interaction between rods decay with the distance 
Translational and rotational diffusion of rods 
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The Diffusion Matrix in Kirkwood 
Approximation

l – length of the rod, d- diameter, ηs – viscosity of solvent 
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Collision Integral
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Interaction Kernel
Decays with distance between rods
Depends on relative angle between rods
Symmetric with respect permutation of rods  

β small for kinesin
β large for NCD



39Term                                               prohibited by the momentum conservation

Continuum Equations
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Asters and Vortices 

For HB2 <<1 equations split and become independent 

Without blue and red terms Eq possesses “Abrikosov Vortex Solution” 
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Vortices 
For H=0 (no red terms) the only stable  solutions  ϕ= ±π/2

-Vortex: MT circle  around the center 

Aranson & Tsimring, PRE 2003

• Liquid crystals analogy: Frank Free Energy

Term                    penalizes splay deformations → vortices 

splay                                     bend 
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Asters 

For H≠0 (no blue terms) the only stable  solution  ϕ= 0

No phase degeneracy: 

Aster: MT directed towards the center 
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Vortex/Aster Solutions

B=0.23
ρ0= 4

For H≠0 far away from the core the distinction
 between vortex and aster disappears 
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Linear Instability of Aster
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Linearized Equation for Aster

Equations solved numerically by shooting-matching 
method with Newton iterations
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Phase Diagram
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Implications of Analysis

Asters stable for large MM density
Vortices stable  only for low MM density
No stable vortices for H>Hc for all MM density
(in experiments no vortices in Ncd for all densities)  

• 2D mixture of MM & MT exhibits pattern formation 
• In kinesin vortices are formed for low density of MM and asters are 

formed for higher density 
• In Ncd only asters are observed for all MM densities 
• For very high MM density asters disappear and bundles formed 

Experiment
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Numerical Solution
Quasispectral Method ; 256x256 FFT harmonics 
Periodic boundary conditions 
Spontaneous creation of vortices and asters

H=0.004                                                    H=0.125 
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Evolution of Vortices and Asters 
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Complex Ginzburg-Landau Equation Analogy 

Vortex Glass State

Aster Lattice 

I.A. L. Kramer, The World of the Ginzburg-Landau 
Equation, Rev Mod Phys, 72, 99 (2002) 
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Generalizations 
Inhomogeneous Motor Distribution m(x,y,t)

Motors move along MT and accumulate in the centers of asters and vortices    
g~m ≠const

 additional diffusion-advection 
    equation for motors m(x,y,t)
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Generalizations

Bundling instability: high MM density
Variable MM dynamics: 

Accumulation of MM at asters centers
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•Rotation of vortices/Drifting domains 
•Density depressions in center of vortices and asters

Motors Attached to Substrate
Connection to self-propelled particles,  Bertin, Droz, and Gregoire, PRE 2006
Shaller et al, Nature, 2010 
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Crosslinks and formation of bundles
•Crosslinks result in a fast and complete alignment 
•Suppress relative sliding of filaments  

F Ziebert, I.A., L Tsimring, NJP 2008
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Modification of density equation due to 
crosslinks

•Isotropic instability without crosslinks (η=0)
•Enhancement of  density instability perp orientation 
of microtubules with crosslinks – bundles formation 
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With crosslinks η=1: 
Polar bundles 

No  crosslinks η=0: 
No density/orientation correlation 
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Comparison with experiment 

Model with crooslinks 
Microtubules with 
2 motor types 
Surrey et al, Science 2001

Actin- myosin  mixture 
(Smith et al, Biophys J, 2007
Kas group)  
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