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Self-Propelled BioParticles

swimming bacteria Bacillus Subtilis
length 5 µm, speed 20 µm/sec  
collective flows up to 100 µm/sec
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Large-Scale Coherence:
“Flat” Sessile Drop
Bugs concentrate at the contact line

Dombrowski, Cisneros,Chatkaew, Goldstein, Kessler, PRL (2004) 
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Schematics of Experimental Setup
Concept: Andrey Sokolov, ANL
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Inelastic collisions between bacteria
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Andrey Sokolov & Igor Aranson, ANL
Ray Goldstein & John Kessler, U Arizona 
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Collective swimming transition
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Velocity-Orientation Correlation  Lost
Velocity Field V Orientation Field  τ
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Transition to Collective Swimming
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Single particles (Jeffery orbits):  
Slender body in viscous fluid      

• Planar shear flow: v=(0,γ y,0) , γ  strain rate,  or pure shear 

• α,β – polar angles 
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Slender body dynamics in shear flow 
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Kim and Karilla, Microhydrodynamics, 2005 



Illustration of Jeffery orbits, planar 
shear flow   

11

Click to edit Master text styles
Second level

● Third level
● Fourth level

● Fifth level

ACMD NIST



12

Velocity field: Bacteria are force dipoles

•Bacteria are low Reynolds number creatures: Re=V L/n~10-4

•Bacteria motion is overdamped: no acceleration, zero net force 

•Bacterium acts as a force dipole: force of self-propulsion and force opposing 
drag act on water in opposite directions 

drag force

Michael Graham et al, PRL 2005 
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velocity  of  point monopole in  3D (stokeslet)  

velocity  of  point dipole u0 in  3D (stresslet)  
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velocity  fields of pushers and pullers

u0<0 – pushers (bacteria) u0>0 – pullers (algae)



Drescher et al, PRL 2010, PNAS 2011

algae                                                            bacteria 
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Theoretical Model 
Microscopic interaction rules: 

-self-propulsion; hydrodynamically-induced inelastic collision
-flow advection; direction realignment in shear flow

m

Inelastic collision of two bacteria
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Spatial Localization of Interaction

W- interaction kernel, interaction between rods decay with 
the distance 
Dij,Dr -translational and rotational diffusion of rods 
v0 - propulsion velocity
v,Ω – hydrodynamic velocity and vorticity
E – strain rate tensor 
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The Diffusion Matrix in Kirkwood 
Approximation

l – length of the rod, d- diameter, ηs – viscosity of solvent 
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Theoretical Model 
Microscopic interaction rules: 

-self-propulsion; hydrodynamically-induced inelastic collision
-flow advection; direction realignment in shear flow
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Results of Modeling

•Instability of uniform flow
•Mechanism: coupling between self-
propulsion and shear-induced  alignment  

wavenumber 
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Experiment and Theory

Experiment                                                                    Theory

ρ
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Mean-Field Hydrodynamic Theory
Saintillan & Shelley  

Kinetic equation  for probability distribution 

Saintillan and Shelley, PRL 2008  
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Meanfield Hydrodynamic Theory

Saintillan and Shelley, PRL 2008  

Linear growth rate  
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Hydrodynamic Coarse-Grained Theory

Baskaran & Marchetti, PNAS 2009  

• eqs for concentration, orientation, nematic tensor 
• long-wave linear stability analysis   
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Rheology: apparent viscosity

Tangential force F
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Viscosity of Passive Suspensions: 
(Albert) Einstein theory

Dilute suspensions of impenetrable spheres, zero 
Reynolds number (Stokes limit)

    η0 – viscosity of the background fluid, 
    φ – volume fraction of spheres
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Self-propulsion and Viscosity 
•When dipole is aligned with flow, dipole increases rate of strain without 
changing forces at the boundary 

•Non-spherical particles tend to align with stable axis of flow 

•Increase of background (bg) flow, decrease of viscosity

•For passive suspensions and pullers , viscosity increases with concentration 
of inclusions 

Pushers: bacteria 
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Probing Micro-Rheology of Active Suspensions 
Experiment #1 

Microrheology is studied in thin free-standing film geometry 
Experiment performed in closed chamber in air and in Nitrogen 
Control of  activity: N2→no swimming, O2 →swimming
Viscosity is extracted from  decay time (T) of a large vortex (L)

Liquid film with 
swimming bacteria

Supporting frame

Movable probe

Probe induced vortex

Magnetic deflecting system

Sokolov & Aranson, PRL 2009 and also Physics World 
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Viscosity vs. Concentration

Assuming that the viscosity 
is spatially independent

Assuming  that the viscosity 
is time-independent 

viscosity:

Collective behavior

Concentration: 10-20 times stationary growth conditions
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Viscosity vs Swimming Speed  

a)n=1.8·1010 cm-3

b)n=1010 cm-3

a)n=1.8·1010 cm-3

b)n=1010 cm-3



Slender body dynamics in shear flow 

31



32

Effective Viscosity via Dissipation Rate 
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Stress Tensor for Dipoles
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Particles rotation: Jeffery orbits      

• Ω  and   – vorticity and rate of strain of the background flow  

• ξα,β  fluctuations (tumbling) with the strength D 

 α= Ωt for ε< < 1  − pure rotation

Β~(b2-a2)/(a2+b2), a,b  - semiaxis
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Linear Fokker-Planck Equation 

P(α,β) – probability distribution function for bacteria orientations 
   κ – angular velocity vector 

Leal & Hinch, JFM 1971 
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Bulk Stress

Contribution due to passive spheroid     (Kim & Karilla, 1991)  
Contribution due to tumbling (noise)     (Leal & Hinch, 1971) 
Contribution due to self-propulsion        (Haines et al, PRE 2009)
K, YH – resistance functions (depend on aspect ratio and position of 
flagella)   
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Effective Viscosity in 3D 
(almost spheres, B→0) 

• V0 – swimming speed, F -propulsion force 

• small fluctuations limit (D <<  ) is singular 

• Decrease of viscosity due to swimming (for pushers, λ>0) 

•Also strain rate   →0 limit is singular limit

Haines et al, 2009; Saintillan 2010
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Flow without Vorticity 

µ∼ εγ /D<<1 – weak tendency to align; µ>>1 – strong alignment

Negative contribution to viscosity for small stain rates 
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Planar Shear Flow 

almost sphere B. subtilis 
b/a=5.7



Counter-Intuitive Conclusion:

No viscosity reduction without tumbling for planar shear flow 

However, experiments show almost no tumbling for Bacillus subtilis 
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Simulations
Bacteria are modeled by swimming point dipoles
No tumbling 
Short-range repulsion to account for finite particle size 
3D simulation domain 
Lee-Edwards boundary conditions in the direction of   
shear 
>100,000 particles 
Simulations are implemented on GPU

Shawn Ryan, Penn State Univ, 2010 
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x→x+γ Lt

x→x-γ Lt
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Equations 



44

Typical simulation 
Full 3D, up to 483 particles 
Fermi GTX480 GPU, 2-3 hours 
Range of velocities, concentrations, strains 
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Stress Tensor
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Viscosity vs Concentration 

Simulations                                        Experiment 
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Viscosity vs Swimming Speed 

Simulations                                        Experiment 

a)n=1.8·1010 cm-3

b)n=1010 cm-3
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Orientation Distribution Functions P(α,β) 

αα= π/4

low concentration, max at π/2

high concentration, max at π/4

 
   

 
 

 

   

Dilute limit with tumbling 
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Analytical Results 
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Conclusions

Equations are derived from microscopic interaction rules 
Reasonable agreement with experiment 
Applications for biological and non-biological systems: 

-bacterial colonies  
-cytoskeleton dynamics  

            -self-propelled particles (vibrated rods, etc)
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