Exploring Complex Dynamics in High-Dimensional Chaotic Systems: From Weather Forecasting to Oceanic Flows

25-29 January 2010

Hidden Order in a Spatiotemporal Chaotic System

Rinto Anugraha Nur Qomaru Zaman, Koyo Tamura, Yoshiki Hidaka, Noriko Oikawa, Shoichi Kai Dept. of Applied Quantum Physics and Nuclear Engineering, Kyushu University, JAPAN

Introduction

Ferromagnetic-Paramagnetic Transition
Ferromagnetic Phase

Experimental

Electroconvection in Homeotropic Nematic

2D XY Model

Mermin-Wagner Theorem $\lim \langle\varphi(\mathbf{r}) \varphi(\mathbf{0})\rangle=0$ Mermin and Wagner, $M_{\mathrm{p}}=\langle\cos (\varphi-\langle\varphi\rangle\rangle$ Selitito and Holdsworth
Fracta/s $11,73(2003)$

Spin $\mathbf{s}_{i}=\left(\cos \varphi_{i}, \sin \varphi_{i}\right)$
$H=-J \sum_{i, j} \mathbf{s}_{i} \cdot \mathbf{s}_{j}=-J \sum_{i, j} \cos \left(\phi_{i}-\phi_{j}\right)$
Kosterlitz-Thouless transition (T_{KT}) - $T<T_{\text {Kт }}$:
$C(r) \propto r^{-\zeta}$

- $T>T_{\mathrm{KT}}$:
$C(r) \propto \exp \left(-r / \xi_{\mathrm{XY}}\right)$
$\xi_{\mathrm{XY}} \propto \exp \left(b\left(T / T_{\mathrm{KT}}-1\right)^{1 / 2}\right.$
Kosteritz and Thouless, J. Phys. C 6, 1181 (1973)

SMT as a 2D-XY system

Problems and Purpose

Nonlinear interactions for NR and OR

Results and Discussion

Spatial Correlation Function

\qquad NR

Pattern Magnetization

$M_{\mathrm{p}}=\langle\cos 2[\varphi-\langle\varphi\rangle\rangle\rangle \quad\left(0 \leq M_{\mathrm{p}} \leq 1\right)$
$=\left[\int_{-\pi / 2}^{\pi / 2} B(\varphi) \cos 2[\varphi-\langle\varphi\rangle] d \phi\right] /\left[\int_{-\pi / 2}^{\pi / 2} B(\varphi) d \varphi\right]$
averaged φ
2 particular conditions

1. Completely isotropic pattern $\quad B(\varphi)=$ constant $\rightarrow M_{\mathrm{p}}=0$. $\begin{array}{ll}\text { 2. Completely stripe pattern } & B(\varphi)=\delta(\varphi) \rightarrow M_{\mathrm{p}}=1 .\end{array}$

$f[\mathrm{~Hz}]$

OR and NR have different symmetry of nonlinear interaction Spatially uniform case
OR : $\frac{\partial \alpha}{\partial t}=-K|A|^{2} \quad \mathrm{NR}: \frac{\partial \alpha}{\partial t}=K|A|^{2} \alpha \quad K<0$

SMT in OR regime

- No stationary solution
- C-director always rotates.
\square Wavevector \mathbf{q} also rotates
\square Global fluctuations break initial anisotropy of \mathbf{q} \square Neither macroscopic order nor long-range correlation exists. SMT in NR regime:
- A stationary solution exists, but is unstable C-director fluctuates around an initial direction - Wavevector \mathbf{q} follows \mathbf{C}-director

L Local fluctuations cannot break initial anisotropy of \mathbf{q}. \square Macroscopic order and long-range correlation exist.

Order-Disoder Transition

For OR, $S_{\infty}=0 \rightarrow$ No long-range order.

For NR, $S_{\infty} \neq 0 \rightarrow$ long range-order exists.

For OR, $M_{\mathrm{p}}=0 \rightarrow$ Disordered state
For NR, $M_{\mathrm{p}} \neq 0 \rightarrow$ Ordered state
The transition point for the order-disorder is the Lifshitz frequency. OR and NR belong to spatiotemporal chaotic pattern. Spatiotemporal chaos is associated with randomness and disorder. However, by defining new order parameters such as spatial correlation function and pattern magnetization, hidden order is revealed in NR regime. The SMT and the conventional 2D XY model have the same dimensions and the same degree of freedom of vector fields. However, the SMT is induced by non-thermal fluctuations, whereas in 2D XY model, no longrange order for any finite temperature is due to thermal fluctuations

Acknowledgements

This works is partially supported by Grant-inAid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (Grant No. 17340119) and from the Japan Society for the Promotion of Science (Grant No. 20.08333).

Journal reference

R. Anugraha, K. Tamura, Y. Hidaka, N. Oikawa, and S. Kai, Phys. Rev. Lett. 100, 164503 (2008)

