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Coupled phase oscillators are used widely 1n describing cooperative phenomena in physics, biology, chemistry, engineering, and other fields. We study
the models of Winfree and Kuramoto of synchronization of phase oscillators. Both models show that for typical distribution of natural frequencies a
synchronous behaviour emerges when coupling intensity between oscillators exceeds certain value. A coherence 1s suitably described with an order
parameter. The order parameter attains non-zero value for couplings stronger than the critical, thus making the onset of synchronization a phase transition.

For the Kuramoto model the phase transition 1s of first or second order depending on the type of distribution function of the natural frequencies of the
oscillators. The transition 1s of first order when the distribution has a plateau where the seed of the synchronized cluster 1s formed. The exponents
characterizing the dependence of the order parameter on the coupling strength are derived analytically for both first- and second-order phase transitions.

We also consider an analytically solvable version of the Winfree model of synchronization of phase oscillators. It 1s obtained that the transition from
incoherence to partial death state 1s characterized by third or even higher order phase transitions according to Ehrenfest classification. The order depends on
the type of distribution function of natural frequencies of the oscillators. The corresponding critical exponents are found analytically and confirmed
numerically. The transition to partial death 1s considered also in more general setting when the interaction intensity depends on the Kuramoto order

parameter 7 as K7, where z is an additional parameter. If z is smaller than some particular value z, dependent on the distribution of natural frequencies of the

oscillators, the critical exponents remain unchanged. For z>z_ there 1s a first order transition with hysteresis.

Introduction

Cooperative behaviour is ubiquitous in nature at
different scales, ranging from coordinated pulsing of heart
or circadian pacemaker cells, to populations of flashing
fireflies or chorusing crickets, to unison clapping of theatre
audience [1,2,3]. The models of Winfree and Kuramoto are
paradigmatic models for studying the synchronization
phenomena [4,5]. The models consider interacting units
described with phase oscillators. When the coupling
strength 1s weaker than the threshold value, the population is
incoherent. Coherence emerges as a phase transition when
the coupling intensity exceeds the critical value. The
dynamics of the oscillators can be visualized as a population
of small dots running around the circle.
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Population of ten coupled oscillators, evolving according to the
Kuramoto model. The black circle represents the order parameter.

The Kuramoto Model

The Kuramoto model considers population of N coupled
phase oscillators with phase dynamics [5,6]
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The natural frequencies are distributed according to an
asymmetric unimodal (single-peaked) function. Phase
coherence 1s described with the order parameter
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In an appropriately selected reference frame, drifting with
some velocity , the order parameter has constant

amplitude » and phase zero. Phase dynamics equations in the
drifting reference frame are
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In the limit N—w the population is more conveniently
described with number density function p(®,0,f) of

oscillators with natural frequency ® and phase 0 at the
instant ¢. The order parameter is calculated from the density
with an integral. By conservation principle, density evolves
according to continuity equation
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From stationary solutions of the continuity equation one can
obtain the frequency of synchronization ®, and the order

parameter of the system. For asymmetric distribution of

natural frequencies g(®) and particular value of the coupling
constant they can be calculated from the following self-
consistent pair of equations [6]
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For the second-order phase transitions the order parameter
grows continuously from zero at the critical coupling. First-
order phase transitions appear when the distribution
function has a flat section and the seed of synchronized
cluster 1s formed inside that section.
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Triangular and olympic distributions of natural frequencies,
with corresponding graphs of 7(K) and ®,(K) dependence. For the

triangular distribution the transition is of second and for the olympic
distribution the transition is of first order. The notation is following:
analytical (black), asymptotic (green), and numerical (red).

Asymptotic relationships for the order parameter and

frequency of synchronization are summarized in the
following table [7, §].

Critical exponents of the phase transitions in the Kuramoto
model. The parameter m for second-order transitions is the degree

of the first non-zero term in the Taylor expansion of g(w) at the
frequency of synchronization. For first-order transition it is the
degree of the polynomial fall-off of the distribution in immediate
vicinity of the plateau.

First — order transitions

Symmetric g(®) | Asymmetric g(®)
2/ (2m+3)
2/ (2m+3)

Sync frequency

Order parameter 2/ (2m+3)

Second — order transitions

Symmetric g(®) | Asymmetric g(®)

Sync frequency - 1
Order parameter 1/m 1/2
The Wintree model

The phases of the oscillators in the Winfree model evolve
according to the equation [9]
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For general influence P(0) and response function R(0), the
Winfree model i1s hard to analyze mathematically. Some
analytical calculations can be done for the following choice
of interaction functions [9]

P(O)=14+cosO, R(O0)=-sin0.

The order parameter X and the effective coupling o are
defined as
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The natural frequencies are considered to be positive and
symmetrically distributed around the mean. For different
coupling strengths and different natural frequency
dispersions, in the phase portrait exist incoherence,
synchronization, oscillation death, and partially
synchronized states. With similar reasoning as for the
Kuramoto model it can be shown that in partial death state
the order parameter is given by
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The phase transition from incoherence to partial death state
1s of third or higher order. The order parameter growth in
vicinity of the critical point scales as

X oc(K-K)°.
The value of the critical exponent o depends on the

properties of the distribution function in immediate vicinity
of the lowest frequency. The exponent oo has the same value
even for more general coupling among the oscillators
defined as K7, where r is the Kuramoto order parameter
and z 1s an additional parameter smaller than some
critical value z..
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Order parameter X versus coupling parameter K for uniform and
triangular shaped distributions of natural frequencies, numerical
(black) and analytical(green) results.
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Order parameter X as a function of the coupling parameter K for
the generalized Winfree model for uniform distribution of natural

frequencies g(w)=1; 0.5 o <1.5. Going from the leftmost curve to
the right, the values of the parameterzare0.5,1,1.5,2,and 2.5.
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