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81531-980 Curitiba – Paraná
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Abstract
A system plus environment conservative model is used to charac-
terize the nonlinear dynamics when the time averaged energy for
the system particle starts to decay. The system particle dynamics
is regular for low values of the N environment oscillators and be-
comes chaotic in the interval 13 ≤ N ≤ 15, where the system time
averaged energy starts to decay. To characterize the nonlinear mo-
tion we estimate the Lyapunov exponent (LE) and determine the
power spectrum. For much larger values of N the energy of the
system particle is completely transferred to the environment and
the corresponding LEs decrease.

1 Introduction
Small dissipation is inevitable in real systems. A possibility to de-
scribe dissipation is to consider an open system interacting with its
environment by collision processes. The whole problem (System
+ Environment + Interaction) is conservative but, due to energy
exchange between system and environment, the system can be
interpreted as an open system with dissipation. In this work the
environment is composed by a finite number N of uncoupled har-
monic oscillators. Changing N we are able to study the interesting
transition from low- to high-dimensional dynamical systems which
simultaneously experiment dissipation. We focus on the nonlinear
dynamics of the time series obtained for the system particle un-
der the N harmonic oscillators. The tools used in this analysis are
the Lyapunov spectrum [1], phase space dynamics and the power
spectrum. Our system is deterministic and we use the TISEAN [2]
package to analyse the time series.

2 The model
We considered the problem composed by a particle under the in-
fluence of an asymmetric potential (the system) interacting with N
independent harmonic oscillators (the environment). The dimen-
sionless equations of motion [3] are

Ẍ +
dV (X)

dX
−

N
∑
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γjxj + X

N
∑
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γ2
j

µjw
2
j

= 0, (1)

ẍj + w2
jxj −

γj

µj
X = 0, (2)

where X and ~x are, respectively, system and oscillators (xj, j =
1, 2, ..., N) coordinates. The coupling parameter γj is a measure of
the strength of the bilinear coupling between the system and the
j-oscillator. The dimensionless anharmonic potential [see Fig. 1] is
defined in the interval X = (−0.38, 0.62) by

V (X) = C − 1
4π2δ

[

sin 2π(X − X0) + 1
4 sin 4π(X − X0)

]

, where the

constant C is such that V (0) = 0 and δ = sin 2π|X ′
0| + sin 4π|X ′

0|.
The time and the oscillators frequencies wj are written in units of
w0 = 1.0, which is the frequency of the linear motion around the
minimum of the potential and is determined from w2

0 = 4π2V0δ/M .
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Figure 1: Dimensionless an-
harmonic potential V (X).

In the numerical experiments
we used fourth-order Runge-
Kutta integrator with fixed step
∆t = 10−3. For all cases
studied, dimensionless mass
µj = 0.1 and γj = 0.01 are
used (the energy is admen-
sional too). The interaction
energy is assumed to be zero,
the energy of the system is
very close to the total energy
ES ∼ ET = 0.02, and the oscil-
lators energy is close to zero (EO ∼ 0.0).

3 Emergence of the time averaged
energy decay

For lower values of N . 15, the Poincaré recurrence times (PRT)
are not very large and the energy return can be observed in simula-
tions. However, for higher values of N the PRT increase very much
to be observable with finite integration times. In such cases we can
say that the energy transferred to the environment will not return,
within the integration times, to the system particle [see Fig. 2].
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Figure 2: Mean energy (over 800 environmental initial conditions)
as a function of time for N = 12, 13, 14, 60, 400.

Figure 3: Phase space dynamics of the system particle.

Figure 3 shows the phase space dynamics of the system particle
for N = 1, 12, 13, 14, 60, 400. As N increases the system particle ex-
changes energy with the oscillators and moves within a layer inside
the deformed ellipsis. For higher values of N (60 and mainly 400)
the system particle rapidly loses its energy to the environment, and
ends up moving close to the minimum of the anharmonic potential.
When N = 4000 (not shown) the system particle energy is close to
zero and the energy per oscillator is also close to zero.

4 Nonlinear analysis
By integrating Eqs. (1) and (2) for many values of N , we gener-
ated the time series (TS) for the variable X(t) for the system parti-
cle only. In order to perform the nonlinear analysis it is necessary
to determine the dimension m of the reconstructed attractor [4].
The adequate values of m were determined using the false-nearest
neighbors method [5]. For values of N = 1 → 4, the appropriate
embedding dimension is m = 2, for N = 5 → 12 it is m = 3, for
N = 13 and N = 14 it is m = 4 and for N ≥ 15 it is m = 5.

In the interval 1 ≤ N ≤ 12, all LEs are time independent and
are estimated to be . 10−3. The power spectra for N = 2 → 12
(not shown) shows some small frequencies around the peaks from
Fig. 4(a).
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Figure 4: Power spectrum for (a) N = 1 (main frequency is ω = 0.56
Hz and the other peaks are its high-harmonics), (b) N = 13 and (c)
N = 20.

Figure 5 shows the (a) energy from the system particle and (b) the
four LEs as a function of time for N = 13. Corresponding power
spectrum Fig. 4(b) new smaller peaks appear close to the main fre-
quencies. We can see [Fig. 4(c)] that almost all main frequencies
dissapear and a complicated spectrum is obtained for N = 20 (a
chaotic dynamics is therefore expected).
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Figure 5: (a) Energy from the system particle and (b) LE spectrum
for N = 13 as a function of the iterations of the time series.

Figure 6 shows the (a) energy of the system particle and (b) the
LEs as a function of time for N = 20. Each time the amplitude of
the oscillation of energy decreases, energy starts to be transferred
to the environment and the positive LEs decrease in time. Such lo-
cal decreasing of the LEs in conservative systems is due to “sticky”
(trapped) trajectories [6]. As N increases, the regular islands are
broken and the chaotic trajectory may find another regular island
which will decrease its LEs.

Figure 7 shows the power spectra for N = 60, 150, 4000. Clearly the
Fig. 7 (power spectra) shows is possible to observe the complexity
induced by the environment oscillators. The main frequencies ob-
served at low values of N [see Fig. 4(a)] are now mixed to other

(new) frequencies which arise due to the particle collisions with the
oscillators.
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Figure 6: (a) Energy for the system particle and (b) LE spectrum
as a function of the iterations of the time series for N = 20.
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Figure 7: Power spectra for (a) N = 60, (b) N = 150 and (c)
N = 4000.

Figure 8 shows the (a) final time average energy from the system
particle and (b) positive estimated LEs as a function of N . We ob-
serve that for values of N . 12, the initial energy (∼ 0.02) equals
the final energy. Close to N ∼ 13, 14 the final mean energy starts
to decrease, meaning that a portion of the system energy is trans-
ferred to the environment. For higher values of N the LEs decrease
slowly [Fig. 8(b)] following the qualitative behavior of the mean final
energy [Fig. 8(a)].

 0

 1

 2

 3

 4

 1  10  100  1000  10000

1
0

-1
Λ

N

(b)

 0

 4

 8

12

16

20

1
0

-3
 E

(a)

Figure 8: (a) Final time average energy from the system particle
and (b) positive LEs as a function of N .

5 Conclusions
We observed that the time averaged energy decay for the system
particle starts to occur in the interval N = (10, 20). For lower values
of N the system continuously exchange energy with the environ-
ment but the time average is constant. For much higher values
of N the system particle energy is transferred to the environment
for times very close to zero. Numerical evidences show a connec-
tion between the variation (in time) of the amplitude of the particle
energy with the energy decay and the decrease of the Lyapunov
exponents. This is explained in terms of chaotic trajectories from
the system particles trapped close to regular island. Since this tra-
jectory is restricted to a smaller portion of the phase space, part
of the total energy is transferred to other degrees of freedom thus
explaining the origin of the time averaged energy decay.
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