Isospectral Graph Reductions

Leonid Bunimovich

Outline

(1) Graphs Reductions

- Networks and Graphs
- Definitions
- Graph Reductions
- Main Results
(2) Eigenvalue Estimation
- Gershgorin's Theorem
- Brauer's Theorem
- Brualdi's Theorem
(3) Summary and Implications
- References

Graphs Reductions
Eigenvalue Estimation Summary and Implications

Network Structure

Typical real networks are defined by some large graph with complicated structure $[2,8,11]$.

E.coli metabolic network

Question: To what extent can this structure be simplified/reduced while maintaining some characteristic of the network?

The collection of graphs \mathbb{G}

The graph of a network may or may not be directed, weighted, have multiple edges or loops.

Each such graph can be considered a weighted, directed graph without multiple edges possibly with loops.

Let \mathbb{G} be the collection of all such graphs.

The collection of graphs \mathbb{G}

Definition

A graph $G \in \mathbb{G}$ is triple $G=(V, E, \omega)$ where V is its vertices, E its edges, and $\omega: E \rightarrow \mathbb{W}$ where \mathbb{W} is the set of edge weights.

An important characteristic of a network/graph is the spectrum of its weighted adjacency matrix $[1,3,10]$.

Weighted Adjacency Matrix

Definition

If $G=(V, E, \omega)$ where $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and $e_{i j}$ is the edge from v_{i} to v_{j} the weighted adjacency matrix $M(G)=M(G, \lambda)$ of G is

$$
M(G, \lambda)_{i j}=\left\{\begin{array}{l}
\omega\left(e_{i j}\right) \text { if } e_{i j} \in E \\
0, \text { otherwise }
\end{array}\right.
$$

Question: How can the number of vertices in a graph be reduced while maintaining the eigenvalues, including multiplicities, of its adjacency matrix?

Spectrum of a Graph $G \in \mathbb{G}$

Definition

Let $\mathbb{C}[\lambda]$ be the polynomials in the variable λ with complex coefficients. Define \mathbb{W} to be the rational functions of the form p / q where $p, q \in \mathbb{C}[\lambda]$ such that p and q have no common factors.

Definition

For $G \in \mathbb{G}$ let $\sigma(G)$ denote the spectrum of G or the set $\{\lambda \in \mathbb{C} \mid \operatorname{det}(M(G, \lambda)-\lambda I)=0\}$ including multiplicities.

$$
\sigma(G)=\{1, \pm \sqrt{(1-2 i) / 5}\}
$$

Structural Sets

Definition

For $G=(V, E, \omega)$ the nonempty vertex set $S \subseteq V$ is a structural set of G if each nontrivial cycle of G contains a vertex of S. We denote by $\operatorname{st}(G)$ the set of all structural sets of G.

Figure: $S=\left\{v_{1}, v_{2}\right\}$ a structural set of G

Structural Sets

Definition

For $G=(V, E, \omega)$ the nonempty vertex set $S \subseteq V$ is a structural set of G if each nontrivial cycle of G contains a vertex of S. We denote by $\operatorname{st}(G)$ the set of all structural sets of G.

Figure: $T=\left\{v_{1}, v_{3}, v_{4}, v_{5}\right\}$ not a structural set of G

Branches

Definition

For $G=(V, E)$ with $S=\left\{v_{1}, \ldots, v_{m}\right\} \in \operatorname{st}(G)$ let $\mathcal{B}_{i j}(G, S)$ be the set of paths or cycles from v_{i} to v_{j} having no interior vertices in S. Furthermore, let $\mathcal{B}_{S}(G)=\bigcup_{1 \leq i, j \leq m} \mathcal{B}_{i j}(G, S)$ be the branches of G with respect to S.

Figure: Branches of $\mathcal{B}_{S}(G)$ each colored either red, brown, green, or blue.

Branch Products

Definition

Let $G=(V, E, \omega)$ and $\beta \in \mathcal{B}_{S}(G)$. If $\beta=v_{1}, \ldots, v_{m}, m>2$ and $\omega_{i j}=\omega\left(e_{i j}\right)$ then

$$
\mathcal{P}_{\omega}(\beta)=\frac{\prod_{i=1}^{m-1} \omega_{i, i+1}}{\prod_{i=2}^{m-1}\left(\lambda-\omega_{i i}\right)}
$$

is the branch product of β. If $m=2$ then $\mathcal{P}_{\omega}(\beta)=\omega_{12}$.

Figure: $\mathcal{P}_{\omega}(\beta)=\frac{\omega_{12} \omega_{23}}{\lambda-\omega_{22}}$.

Reductions of $G \in \mathbb{G}$

Definition

For $G=(V, E, \omega)$ with structural set $S=\left\{v_{1} \ldots, v_{m}\right\}$ let $\mathcal{R}_{S}(G)=(S, \mathcal{E}, \mu)$ where $e_{i j} \in \mathcal{E}$ if $\mathcal{B}_{i j}(G, S) \neq \emptyset$ and

$$
\mu\left(e_{i j}\right)=\sum_{\beta \in \mathcal{B}_{i j}(G, S)} \mathcal{P}_{\omega}(\beta), \quad 1 \leq i, j \leq m .
$$

We call $\mathcal{R}_{S}(G)$ the isospectral reduction of G over S.

Note: $\mathcal{R}_{S}(G) \in \mathbb{G}$ for all $S \in \operatorname{st}(G)$.

Graphs Reductions

Networks and Graphs

Reduction Example

Graphs Reductions

Networks and Graphs

Alternate Reduction

Figure: $T=\left\{v_{3}, v_{4}, v_{5}, v_{6}\right\}$

Graphs Reductions
Eigenvalue Estimation Summary and Implications

Difference in Spectrum

Question: How are $\sigma(G)$ and $\sigma\left(\mathcal{R}_{S}(G)\right)$ related?

Theorem: (Bunimovich, Webb [6])

For $G=(V, E, \omega)$ and $S \in \operatorname{st}(G)$

$$
\operatorname{det}\left(M\left(\mathcal{R}_{S}(G)\right)-\lambda I\right)=\frac{\operatorname{det}(M(G)-\lambda I)}{\prod_{v_{i} \in \bar{S}}\left(\omega_{i i}-\lambda\right)}
$$

where \bar{S} is the complement of S in V.

The $\mathcal{N}_{S}^{ \pm}$Sets

Definition

For $G=(V, E, \omega), S \in \operatorname{st}(G)$, and $S(\lambda)=\prod_{v_{i} \in \bar{S}}\left(\omega_{i i}-\lambda\right)$ let
(i) $\mathcal{N}_{S}^{-}=\{\lambda \in \mathbb{C}: S(\lambda)=0\}$ and
(ii) $\mathcal{N}_{S}^{+}=\{\lambda \in \mathbb{C}: S(\lambda)$ is undefined $\}$
where both sets include multiplicities.

Corollary: (Bunimovich, Webb)
Let $G \in \mathbb{G}$ with $S \in \operatorname{st}(G)$. Then

$$
\sigma\left(\mathcal{R}_{S}(G)\right)=\left(\sigma(G) \backslash \mathcal{N}_{S}^{-}\right) \cup \mathcal{N}_{S}^{+}
$$

Graphs Reductions
Eigenvalue Estimation Summary and Implications

Main Result (Example)

$$
\sigma(G)=\{2,-1,1,1,0,0\}
$$

$S(\lambda)=\lambda^{2}(1-\lambda)^{2}$ implying $\mathcal{N}_{S}^{-}=\{1,1,0,0\}$, and $\mathcal{N}_{S}^{+}=\emptyset$.

Hence, $\sigma\left(\mathcal{R}_{s}(G)\right)=\{2,-1\}$.

Sequential Reductions

As $\mathcal{R}_{S}(G) \in \mathbb{G}$ it may possible to further reduce $\mathcal{R}_{S}(G) \in \mathbb{G}$.

Question: To what extent is the structure of a graph preserved under different sequential reductions?

Commutativity of Sequential Reductions

Definition

Let $\mathcal{R}\left(G ; S_{1}, \ldots, S_{m}\right)$ be the graph G reduced first over S_{1}, then S_{2} and so on up to the vertex set S_{m}. If this can be done we say S_{1}, \ldots, S_{m} induces a sequence of reductions on G.

Theorem: Commutativity of Reductions (Bunimovich, Webb [7])
For $G \in \mathbb{G}$ suppose the sequences S_{1}, \ldots, S_{m} and T_{1}, \ldots, T_{n} both induce a sequence of reductions on G. If $S_{m}=T_{n}$ then $\mathcal{R}\left(G ; S_{1}, \ldots, S_{m}\right)=\mathcal{R}\left(G ; T_{1}, \ldots, T_{n}\right)$.

Graphs Reductions

The Weight Set \mathbb{W}_{π}

Definition

Let $\mathbb{W}_{\pi}=\left\{\omega \in \mathbb{W}: \omega=\frac{p}{q}, \operatorname{deg}(p) \leq \operatorname{deg}(q)\right\}$ and $\mathbb{G}_{\pi} \subset \mathbb{G}$ be the graphs with weights in \mathbb{W}_{π}.

Both $G, \mathcal{R}_{S}(G) \in \mathbb{G}_{\pi}$.

Existence and Uniqueness of Sequential Reductions

Theorem: Existence and Uniqueness (Bunimovich, Webb [7])

Let $G=(V, E, \omega)$ be in \mathbb{G}_{π}. Then for any nonempty set $\mathcal{V} \subseteq V$ there is a sequence of reductions that reduces G to the unique graph $\mathcal{R}_{\mathcal{V}}[G]=(\mathcal{V}, \mathcal{E}, \mu)$.

$$
v_{1} \bullet \frac{\lambda}{\lambda^{2}-\lambda-1}
$$

$$
\mathcal{R}_{\left\{v_{1}\right\}}[G]
$$

Remark

Any graph G where $M(G) \in \mathbb{C}^{n \times n}$ is a graph in the set \mathbb{G}_{π}.

Outline

(1) Graphs Reductions

- Networks and Graphs
- Definitions
- Graph Reductions
- Main Results
(2) Eigenvalue Estimation
- Gershgorin's Theorem
- Brauer's Theorem
- Brualdi's Theorem
(3) Summary and Implications
- References

Gershgorin Theorem

$$
\text { If } A \in \mathbb{C}^{n \times n} \text { let } r_{i}(A)=\sum_{j=1, j \neq i}^{n}\left|A_{i j}\right|, \quad 1 \leq i \leq n
$$

Theorem: (Gershgorin [9,12])

Let A be an $n \times n$ matrix with complex entries. Then all eigenvalues of A are located in the set

$$
\Gamma(A)=\bigcup_{i=1}^{n}\left\{z \in \mathbb{C}:\left|z-A_{i i}\right| \leq r_{i}(A)\right\} .
$$

Gershgorin Theorem (Example)

Consider the graph \mathcal{G} with adjacency matrix:

$$
M(\mathcal{G})=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0
\end{array}\right]
$$

Polynomial Extension

Let \mathbb{G}^{n} be the graphs in \mathbb{G} with n vertices.

Definition

If $G \in \mathbb{G}^{n}$ and $M_{G}(\lambda) i j=p_{i j} / q_{i j}$ let $L(G)_{i}=\prod_{j=1}^{n} q_{i j}$ for $1 \leq i \leq n$. We call the graph \bar{G} with adjacency matrix

$$
M(\bar{G})_{i j}=\left\{\begin{array}{lc}
L(G)_{i} M(G)_{i j} & i \neq j \\
L(G)_{i}\left(M(G)_{i j}-L(G)_{i} \lambda\right)+\lambda & i=j
\end{array}\right.
$$

the polynomial extension of G.

Example: $M(G)=\left[\begin{array}{cc}1 / \lambda & 1 \\ (\lambda+1) / \lambda & 1 / \lambda^{2}\end{array}\right], \quad M(\bar{G})=\left[\begin{array}{cc}-\lambda^{2}+\lambda+1 & \lambda \\ \lambda^{3}+\lambda^{2} & \lambda^{4}+2 \lambda\end{array}\right]$

$\mathcal{B} \mathcal{W}_{\Gamma}$ Regions

For $G \in \mathbb{G}^{n}$ let $r(G)_{i}=\sum_{j=1, j \neq i}^{n}\left|M(G)_{i j}\right|$ for $1 \leq i \leq n$.

Theorem (Bunimovich, Webb [6])

For $G \in \mathbb{G}^{n}, \sigma(G)$ is contained in the Gershgorin-type region given by

$$
\mathcal{B} \mathcal{W}_{\Gamma}(G)=\bigcup_{i=1}^{n}\left\{\lambda \in \mathbb{C}:\left|\lambda-M(\bar{G})_{i i}\right| \leq r(\bar{G})_{i}\right\}
$$

$\mathcal{B} \mathcal{W}_{\Gamma}$ Regions

Question: How do graph reductions effect Gershgorin-type regions?

Theorem: Improved Gershgorin Regions (Bunimovich, Webb [6])
Let $G=(V, E, \omega)$ where \mathcal{V} is any nonempty subset of V. If $G \in \mathbb{G}_{\pi}$ then $\mathcal{B} \mathcal{W}_{\Gamma}\left(\mathcal{R}_{\mathcal{V}}[G]\right) \subseteq \mathcal{B} \mathcal{W}_{\Gamma}(G)$.

Graphs Reductions Eigenvalue Estimation Summary and Implications

Gershgorin's Theorem
Brauer's Theorem
Brualdi's Theorem

Example: $B W_{\Gamma}\left(\mathcal{R}_{s}(G)\right) \subseteq \mathcal{B} \mathcal{W}_{\Gamma}(G)$

$\mathcal{R}(\mathcal{G} ; S)$

$\mathcal{R}(\mathcal{G} ; S, T)$

$$
S=\left\{v_{1}, v_{2}, v_{3}\right\}, T=\left\{v_{1}, v_{2}\right\}
$$

Graphs Reductions Eigenvalue Estimation Summary and Implications

Gershgorin's Theorem
Brauer's Theorem
Brualdi's Theorem

Example: $B W_{\Gamma}\left(\mathcal{R}_{s}(G)\right) \subseteq \mathcal{B} \mathcal{W}_{\Gamma}(G)$

Figure: $\sigma(\mathcal{G})=\{-1,-1,2,-i, i\}$.

Brauer's Ovals of Cassini \mathcal{K}

Theorem: (Brauer [4,12])

Let $A \in \mathbb{C}^{n \times n}$ where $n \geq 2$. Then all eigenvalues of A are in

$$
\mathcal{K}(A)=\bigcup_{\substack{1 \leq i, j \leq n \\ i \neq j}}\left\{z \in \mathbb{C}:\left|z-A_{i i}\right|\left|z-A_{j j}\right| \leq r_{i}(A) r_{j}(A)\right\}
$$

Also, $\mathcal{K}(A) \subseteq \Gamma(A)$.

This theorem can likewise be extended to $G \in \mathbb{G}$ by defining the analogous region $\mathcal{B} \mathcal{W}_{\mathcal{K}}(G)$. Moreover, these regions also decrease in size as G is reduced (Theorem: Bunimovich, Webb [6]).

Graphs Reductions Eigenvalue Estimation Summary and Implications

Gershgorin's Theorem
Brauer's Theorem
Brualdi's Theorem

Example: $B W_{\mathcal{K}}\left(\mathcal{R}_{s}(G)\right) \subseteq \mathcal{B} \mathcal{W}_{\mathcal{K}}(G)$

Figure: $\sigma(\mathcal{G})=\{-1,-1,2,-i, i\}$.

Varga's Extension of Brualdi's Theorem [5]

Theorem: (Varga [12])

Let $A \in \mathbb{C}^{n \times n}$ have one strongly connected component. Then the eigenvalues of A are contained in the set

$$
B(A)=\bigcup_{\gamma \in C(A)}\left\{z \in \mathbb{C}: \prod_{v_{i} \in \gamma}\left|z-A_{i i}\right| \leq \prod_{v_{i} \in \gamma} \tilde{r}_{i}(A)\right\} .
$$

Also, $B(A) \subseteq \mathcal{K}(A)$.

This theorem can also be extended to $G \in \mathbb{G}_{\pi}$ by defining the analogous region $\mathcal{B} \mathcal{W}_{B}(G)$. However, it is not always the case that $\mathcal{B} \mathcal{W}_{B}\left(\mathcal{R}_{S}(G)\right) \subseteq \mathcal{B} \mathcal{W}_{B}(G)$.

Sufficient Condition

Theorem: Improved Brualdi Regions (Bunimovich,Webb [6])

Let $G=(V, E, \omega)$ where $G \in \mathbb{G}_{\pi}$ and V contains at least two vertices. If $v \in V$ such that both $\mathcal{A}(v, G)=\emptyset$ and $C(v, G)=\mathcal{S}(v, G)$ then $\mathcal{B} \mathcal{W}_{B}\left(\mathcal{R}_{V \backslash v}(G)\right) \subseteq \mathcal{B} \mathcal{W}_{B}(G)$.

Here the set $\mathcal{A}(v, G)$ is the set of cycles in G adjacent to v and the condition $C(v, G)=\mathcal{S}(v, G)$ means that every cycle through v has a specific but easily described graph structure.

Outline

(1) Graphs Reductions

- Networks and Graphs
- Definitions
- Graph Reductions
- Main Results
(2) Eigenvalue Estimation
- Gershgorin's Theorem
- Brauer's Theorem
- Brualdi's Theorem
(3) Summary and Implications
- References

Summary and Implications: Isospectral Graph Reductions

- The class of graphs which can be isospectrally reduced is very general.
- It is possible to consider different isospectral reductions of the same graph, as well as sequences of such reductions.
- If \mathcal{V} is any nonempty subset of the vertices of $G \in \mathbb{G}_{\pi}$ then there is a unique reduction of G over \mathcal{V}. That is, it is possible to (uniquely) simplify the structure of G to whatever degree is desired.
- It is possible to establish new relations between topologies of graphs e.g. if two graphs have similar reductions.

Summary and Implications: Isospectral Graph Reductions

- The process of reducing a graph can be done knowing only the local structure of the graph.
- The techniques applied in graph reductions can be used for optimal design, in the sense of structural simplicity of dynamical networks with prescribed dynamical properties ranging from synchronizability to chaoticity.
- It is possible to reduce a graph over specific weight sets.

Summary and Implications: Eigenvalue Estimates

- Gershgorin and Brauer-type estimates of $\sigma(G)$ improve as the graph G is reduced.
- Brualdi-type estimates of $\sigma(G)$ can be improved by reducing over specific types of structural sets.
- This process can be used to improve eigenvalue estimates to any desired degree.
- Graph reductions decrease the number of subregions needed to compute the Gershgorin, Brauer, and Brualdi-type regions simplifying the computational procedure.
- Applications include, estimating the spectrum of the Laplacian matrix of a graph and estimating the spectral radius of a given matrix.

References

[1] V. S. Afriamovich, L. A. Bunimovich, Dynamical networks: interplay of topology, interactions, and local dynamics, Nonlinearity 20, 1761-1771 (2007)
[2] R. Albert, A-L. Barabási, Statistical mechanics of complex networks, Rev. Mod. Phys.74, 47-97 (2002).
[3] M. L. Blank, L. A. Bunimovich, Long range action in networks of chaotic elements, Nonlinearity 19, 329-344 (2006).
[4] A. Brauer, Limits for the characteristic roots of a matrix II, Duke Math J. 14, 21-26 (1947).
[5] R. Brualdi, Matrices, Eigenvalues, and Directed Graphs, Lin. Multilin. Alg. 11 143-165 (1982).
[6] L. A. Bunimovich, B. Z. Webb, Dynamical Networks, Isospectral Graph Reductions, and Improved Estimates of Matrices Spectra, arXiv, arXiv:0911.2453v1, submitted.
[7] L. A. Bunimovich, B. Z. Webb, Isospectral Graph Reductions, arXiv, arXiv:0909.0053v1, submitted.
[8] S. N. Dorogovtsev, J.F.F. Mendes, Evolution of Networks: From Biological Networks to the Internet and WWW, Oxford: Oxford Univ. Press, 2003.
[9] S. Gershgorin, Über die Abgrenzung der Eigenwerte einer Matrix, Izv. Akad. Nauk SSSR Ser. Mat. 1, 749-754 (1931).
[10] M. Newman, A-L. Barabási, D. J. Watts (ed), The Structure of Dynamic Networks, Princeton: Princeton Univ. Press, 2006.
[11] S. Strogatz, Sync: The Emerging Science of Spontaneous Order, New York: Hyperion, 2003.
[12] R. S. Varga, Gershgorin and His Circles, Germany: Springer-Verlag Berlin Heidelberg, 2004.

