Isospectral Graph Reductions

Leonid Bunimovich

Leonid Bunimovich Isospectral Graph Reductions

イロン イヨン イヨン イヨン

3

Networks and Graphs Definitions Graph Reductions Main Results

Outline

Graphs Reductions

- Networks and Graphs
- Definitions
- Graph Reductions
- Main Results
- 2 Eigenvalue Estimation
 - Gershgorin's Theorem
 - Brauer's Theorem
 - Brualdi's Theorem
- Summary and Implications
 References

イロン イヨン イヨン イヨン

Networks and Graphs Definitions Graph Reductions Main Results

Network Structure

Typical real networks are defined by some large graph with complicated structure [2,8,11].

E.coli metabolic network

Question: To what extent can this structure be simplified/reduced while maintaining some characteristic of the network?

< 1[™] >

Networks and Graphs Definitions Graph Reductions Main Results

The collection of graphs $\mathbb G$

The graph of a network may or may not be directed, weighted, have multiple edges or loops.

Each such graph can be considered a weighted, directed graph without multiple edges possibly with loops.

Let \mathbb{G} be the collection of all such graphs.

Networks and Graphs Definitions Graph Reductions Main Results

The collection of graphs $\mathbb G$

Definition

A graph $G \in \mathbb{G}$ is triple $G = (V, E, \omega)$ where V is its vertices, E its edges, and $\omega : E \to \mathbb{W}$ where \mathbb{W} is the set of *edge weights*.

An important characteristic of a network/graph is the spectrum of its weighted adjacency matrix [1,3,10].

Networks and Graphs Definitions Graph Reductions Main Results

•

イロン イヨン イヨン イヨン

Weighted Adjacency Matrix

Definition

If $G = (V, E, \omega)$ where $V = \{v_1, \ldots, v_n\}$ and e_{ij} is the edge from v_i to v_j the weighted adjacency matrix $M(G) = M(G, \lambda)$ of G is

$$M(G,\lambda)_{ij} = egin{cases} \omega(e_{ij}) ext{ if } e_{ij} \in E \ 0, ext{ otherwise} \end{cases}$$

Question: How can the number of vertices in a graph be reduced while maintaining the eigenvalues, including multiplicities, of its adjacency matrix?

Networks and Graphs Definitions Graph Reductions Main Results

Spectrum of a Graph $G \in \mathbb{G}$

Definition

Let $\mathbb{C}[\lambda]$ be the polynomials in the variable λ with complex coefficients. Define \mathbb{W} to be the rational functions of the form p/q where $p, q \in \mathbb{C}[\lambda]$ such that p and q have no common factors.

Definition

For $G \in \mathbb{G}$ let $\sigma(G)$ denote the *spectrum* of G or the set $\{\lambda \in \mathbb{C} | \det(M(G, \lambda) - \lambda I) = 0\}$ including multiplicities.

Networks and Graphs Definitions Graph Reductions Main Results

Structural Sets

Definition

For $G = (V, E, \omega)$ the nonempty vertex set $S \subseteq V$ is a *structural* set of *G* if each nontrivial cycle of *G* contains a vertex of *S*. We denote by st(G) the set of all structural sets of *G*.

イロン イヨン イヨン イヨン

Networks and Graphs Definitions Graph Reductions Main Results

Structural Sets

Definition

For $G = (V, E, \omega)$ the nonempty vertex set $S \subseteq V$ is a *structural* set of *G* if each nontrivial cycle of *G* contains a vertex of *S*. We denote by st(G) the set of all structural sets of *G*.

Networks and Graphs Definitions Graph Reductions Main Results

Branches

Definition

For G = (V, E) with $S = \{v_1, \ldots, v_m\} \in st(G)$ let $\mathcal{B}_{ij}(G, S)$ be the set of paths or cycles from v_i to v_j having no interior vertices in S. Furthermore, let $\mathcal{B}_S(G) = \bigcup_{1 \le i,j \le m} \mathcal{B}_{ij}(G, S)$ be the branches of G with respect to S.

Figure: Branches of $\mathcal{B}_{\mathcal{S}}(G)$ each colored either red, brown, green, or blue.

イロン イヨン イヨン イヨン

Networks and Graphs Definitions Graph Reductions Main Results

Branch Products

Definition

Let $G = (V, E, \omega)$ and $\beta \in \mathcal{B}_S(G)$. If $\beta = v_1, \ldots, v_m$, m > 2 and $\omega_{ij} = \omega(e_{ij})$ then

$$\mathcal{P}_{\omega}(\beta) = \frac{\prod_{i=1}^{m-1} \omega_{i,i+1}}{\prod_{i=2}^{m-1} (\lambda - \omega_{ii})}$$

is the *branch product* of β . If m = 2 then $\mathcal{P}_{\omega}(\beta) = \omega_{12}$.

・ロン ・回 と ・ヨン ・ヨン

Networks and Graphs Definitions Graph Reductions Main Results

Reductions of $G \in \mathbb{G}$

Definition

For $G = (V, E, \omega)$ with structural set $S = \{v_1 \dots, v_m\}$ let $\mathcal{R}_S(G) = (S, \mathcal{E}, \mu)$ where $e_{ij} \in \mathcal{E}$ if $\mathcal{B}_{ij}(G, S) \neq \emptyset$ and

$$\mu(e_{ij}) = \sum_{eta \in \mathcal{B}_{ij}(G,S)} \mathcal{P}_{\omega}(eta), \ 1 \leq i,j \leq m.$$

We call $\mathcal{R}_{S}(G)$ the *isospectral reduction* of G over S.

Note: $\mathcal{R}_{S}(G) \in \mathbb{G}$ for all $S \in st(G)$.

・ロン ・回 と ・ ヨ と ・ ヨ と

Networks and Graphs Definitions Graph Reductions Main Results

Reduction Example

イロン イヨン イヨン イヨン

Networks and Graphs Definitions Graph Reductions Main Results

Alternate Reduction

イロン イヨン イヨン イヨン

Networks and Graphs Definitions Graph Reductions Main Results

Difference in Spectrum

Question: How are $\sigma(G)$ and $\sigma(\mathcal{R}_{\mathcal{S}}(G))$ related?

Theorem: (Bunimovich, Webb [6]) For $G = (V, E, \omega)$ and $S \in st(G)$ $det(M(\mathcal{R}_{S}(G)) - \lambda I) = \frac{det(M(G) - \lambda I)}{\prod_{v_{i} \in \overline{S}}(\omega_{ii} - \lambda)}$ where \overline{S} is the complement of S in V.

イロン 不同と 不同と 不同と

Networks and Graphs Definitions Graph Reductions Main Results

The $\mathcal{N}_{\mathcal{S}}^{\pm}$ Sets

Definition

For
$$G = (V, E, \omega)$$
, $S \in st(G)$, and $S(\lambda) = \prod_{v_i \in \overline{S}} (\omega_{ii} - \lambda)$ let
(i) $\mathcal{N}_{\overline{S}}^- = \{\lambda \in \mathbb{C} : S(\lambda) = 0\}$ and
(ii) $\mathcal{N}_{\overline{S}}^+ = \{\lambda \in \mathbb{C} : S(\lambda) \text{ is undefined}\}$
where both sets include multiplicities.

Corollary: (Bunimovich, Webb)

Let $G \in \mathbb{G}$ with $S \in st(G)$. Then

$$\sigma(\mathcal{R}_{\mathcal{S}}(\mathcal{G})) = \left(\sigma(\mathcal{G}) \setminus \mathcal{N}_{\mathcal{S}}^{-}\right) \cup \mathcal{N}_{\mathcal{S}}^{+}.$$

イロン イヨン イヨン イヨン

Networks and Graphs Definitions Graph Reductions Main Results

Main Result (Example)

$$\sigma(G) = \{2, -1, 1, 1, 0, 0\}$$

 $S(\lambda) = \lambda^2 (1 - \lambda)^2$ implying $\mathcal{N}_S^- = \{1, 1, 0, 0\}$, and $\mathcal{N}_S^+ = \emptyset$.

Hence,
$$\sigma(\mathcal{R}_{\mathcal{S}}(G)) = \{2, -1\}.$$

イロン イヨン イヨン イヨン

Networks and Graphs Definitions Graph Reductions Main Results

Sequential Reductions

As $\mathcal{R}_{\mathcal{S}}(G) \in \mathbb{G}$ it may possible to further reduce $\mathcal{R}_{\mathcal{S}}(G) \in \mathbb{G}$.

Question: To what extent is the structure of a graph preserved under different sequential reductions?

・ロン ・回 と ・ ヨ と ・ ヨ と

Networks and Graphs Definitions Graph Reductions Main Results

Commutativity of Sequential Reductions

Definition

Let $\mathcal{R}(G; S_1, \ldots, S_m)$ be the graph G reduced first over S_1 , then S_2 and so on up to the vertex set S_m . If this can be done we say S_1, \ldots, S_m induces a sequence of reductions on G.

Theorem: Commutativity of Reductions (Bunimovich, Webb [7])

For $G \in \mathbb{G}$ suppose the sequences S_1, \ldots, S_m and T_1, \ldots, T_n both induce a sequence of reductions on G. If $S_m = T_n$ then $\mathcal{R}(G; S_1, \ldots, S_m) = \mathcal{R}(G; T_1, \ldots, T_n)$.

(日) (同) (E) (E) (E) (E)

Networks and Graphs Definitions Graph Reductions Main Results

The Weight Set \mathbb{W}_{π}

Definition

Let $\mathbb{W}_{\pi} = \{ \omega \in \mathbb{W} : \omega = \frac{p}{q}, \ deg(p) \leq deg(q) \}$ and $\mathbb{G}_{\pi} \subset \mathbb{G}$ be the graphs with weights in \mathbb{W}_{π} .

Both $G, \mathcal{R}_{\mathcal{S}}(G) \in \mathbb{G}_{\pi}$.

イロン イヨン イヨン イヨン

Networks and Graphs Definitions Graph Reductions Main Results

Existence and Uniqueness of Sequential Reductions

Theorem: Existence and Uniqueness (Bunimovich, Webb [7])

Let $G = (V, E, \omega)$ be in \mathbb{G}_{π} . Then for any nonempty set $\mathcal{V} \subseteq V$ there is a sequence of reductions that reduces G to the unique graph $\mathcal{R}_{\mathcal{V}}[G] = (\mathcal{V}, \mathcal{E}, \mu)$.

Remark

Any graph G where $M(G) \in \mathbb{C}^{n \times n}$ is a graph in the set \mathbb{G}_{π} .

・ロ・ ・ 日・ ・ 日・ ・ 日・

3

Gershgorin's Theorem Brauer's Theorem Brualdi's Theorem

Outline

Graphs Reductions

- Networks and Graphs
- Definitions
- Graph Reductions
- Main Results

2 Eigenvalue Estimation

- Gershgorin's Theorem
- Brauer's Theorem
- Brualdi's Theorem
- Summary and Implications
 References

Gershgorin's Theorem Brauer's Theorem Brualdi's Theorem

Gershgorin Theorem

If
$$A \in \mathbb{C}^{n \times n}$$
 let $r_i(A) = \sum_{j=1, j \neq i}^n |A_{ij}|, \quad 1 \le i \le n.$

Theorem: (Gershgorin [9,12])

Let A be an $n \times n$ matrix with complex entries. Then all eigenvalues of A are located in the set

$$\Gamma(A) = \bigcup_{i=1}^n \{z \in \mathbb{C} : |z - A_{ii}| \le r_i(A)\}.$$

イロン イヨン イヨン イヨン

Gershgorin's Theorem Brauer's Theorem Brualdi's Theorem

Gershgorin Theorem (Example)

Consider the graph ${\mathcal G}$ with adjacency matrix:

$$M(\mathcal{G}) = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \end{bmatrix}.$$

Gershgorin's Theorem Brauer's Theorem Brualdi's Theorem

Polynomial Extension

Let \mathbb{G}^n be the graphs in \mathbb{G} with *n* vertices.

Definition

If $G \in \mathbb{G}^n$ and $M_G(\lambda)ij = p_{ij}/q_{ij}$ let $L(G)_i = \prod_{j=1}^n q_{ij}$ for $1 \le i \le n$. We call the graph \overline{G} with adjacency matrix

$$M(\bar{G})_{ij} = \begin{cases} L(G)_i M(G)_{ij} & i \neq j \\ L(G)_i (M(G)_{ij} - L(G)_i \lambda) + \lambda & i = j \end{cases}$$

the polynomial extension of G.

Example:
$$M(G) = \begin{bmatrix} 1/\lambda & 1\\ (\lambda+1)/\lambda & 1/\lambda^2 \end{bmatrix}$$
, $M(\bar{G}) = \begin{bmatrix} -\lambda^2 + \lambda + 1 & \lambda\\ \lambda^3 + \lambda^2 & \lambda^4 + 2\lambda \end{bmatrix}$

Gershgorin's Theorem Brauer's Theorem Brualdi's Theorem

\mathcal{BW}_{Γ} Regions

For
$$G \in \mathbb{G}^n$$
 let $r(G)_i = \sum_{j=1, j \neq i}^n |M(G)_{ij}|$ for $1 \le i \le n$.

Theorem (Bunimovich, Webb [6])

For $G \in \mathbb{G}^n$, $\sigma(G)$ is contained in the Gershgorin-type region given by

$$\mathcal{BW}_{\Gamma}(G) = \bigcup_{i=1}^{n} \{\lambda \in \mathbb{C} : |\lambda - M(\bar{G})_{ii}| \leq r(\bar{G})_i\}.$$

・ロン ・回 と ・ヨン ・ヨン

Gershgorin's Theorem Brauer's Theorem Brualdi's Theorem

\mathcal{BW}_{Γ} Regions

Question: How do graph reductions effect Gershgorin-type regions?

Theorem: Improved Gershgorin Regions (Bunimovich, Webb [6])

Let $G = (V, E, \omega)$ where \mathcal{V} is any nonempty subset of V. If $G \in \mathbb{G}_{\pi}$ then $\mathcal{BW}_{\Gamma}(\mathcal{R}_{\mathcal{V}}[G]) \subseteq \mathcal{BW}_{\Gamma}(G)$.

イロン 不同と 不同と 不同と

Gershgorin's Theorem Brauer's Theorem Brualdi's Theorem

Example: $BW_{\Gamma}(\mathcal{R}_{S}(G)) \subseteq \mathcal{BW}_{\Gamma}(G)$

イロト イヨト イヨト イヨト

Gershgorin's Theorem Brauer's Theorem Brualdi's Theorem

Example: $BW_{\Gamma}(\mathcal{R}_{S}(G)) \subseteq \mathcal{BW}_{\Gamma}(G)$

・ロン ・回 と ・ ヨ と ・ ヨ と

Gershgorin's Theorem Brauer's Theorem Brualdi's Theorem

Brauer's Ovals of Cassini \mathcal{K}

Theorem: (Brauer [4,12])

Let $A \in \mathbb{C}^{n \times n}$ where $n \ge 2$. Then all eigenvalues of A are in

$$\mathcal{K}(A) = \bigcup_{\substack{1 \leq i,j \leq n \\ i \neq j}} \{z \in \mathbb{C} : |z - A_{ii}| |z - A_{jj}| \leq r_i(A)r_j(A)\}$$

Also, $\mathcal{K}(A) \subseteq \Gamma(A)$.

This theorem can likewise be extended to $G \in \mathbb{G}$ by defining the analogous region $\mathcal{BW}_{\mathcal{K}}(G)$. Moreover, these regions also decrease in size as G is reduced (Theorem: Bunimovich, Webb [6]).

Gershgorin's Theorem Brauer's Theorem Brualdi's Theorem

Example: $BW_{\mathcal{K}}(\mathcal{R}_{\mathcal{S}}(G)) \subseteq \mathcal{BW}_{\mathcal{K}}(G)$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Gershgorin's Theorem Brauer's Theorem Brualdi's Theorem

Varga's Extension of Brualdi's Theorem [5]

Theorem: (Varga [12])

Let $A \in \mathbb{C}^{n \times n}$ have one strongly connected component. Then the eigenvalues of A are contained in the set

$$B(A) = \bigcup_{\gamma \in C(A)} \{ z \in \mathbb{C} : \prod_{v_i \in \gamma} |z - A_{ii}| \leq \prod_{v_i \in \gamma} \tilde{r}_i(A) \}.$$

Also, $B(A) \subseteq \mathcal{K}(A)$.

This theorem can also be extended to $G \in \mathbb{G}_{\pi}$ by defining the analogous region $\mathcal{BW}_B(G)$. However, it is not always the case that $\mathcal{BW}_B(\mathcal{R}_S(G)) \subseteq \mathcal{BW}_B(G)$.

・ロン ・回 と ・ヨン ・ヨン

Gershgorin's Theorem Brauer's Theorem Brualdi's Theorem

Sufficient Condition

Theorem: Improved Brualdi Regions (Bunimovich,Webb [6])

Let $G = (V, E, \omega)$ where $G \in \mathbb{G}_{\pi}$ and V contains at least two vertices. If $v \in V$ such that both $\mathcal{A}(v, G) = \emptyset$ and C(v, G) = S(v, G) then $\mathcal{BW}_B(\mathcal{R}_{V \setminus v}(G)) \subseteq \mathcal{BW}_B(G)$.

Here the set $\mathcal{A}(v, G)$ is the set of cycles in G adjacent to v and the condition $\mathcal{C}(v, G) = \mathcal{S}(v, G)$ means that every cycle through v has a specific but easily described graph structure.

・ロン ・回 と ・ ヨ と ・ ヨ と

References

Outline

Graphs Reductions

- Networks and Graphs
- Definitions
- Graph Reductions
- Main Results
- 2 Eigenvalue Estimation
 - Gershgorin's Theorem
 - Brauer's Theorem
 - Brualdi's Theorem

Summary and Implications: Isospectral Graph Reductions

- The class of graphs which can be isospectrally reduced is very general.
- It is possible to consider different isospectral reductions of the same graph, as well as sequences of such reductions.
- If V is any nonempty subset of the vertices of G ∈ G_π then there is a unique reduction of G over V. That is, it is possible to (uniquely) simplify the structure of G to whatever degree is desired.
- It is possible to establish new relations between topologies of graphs e.g. if two graphs have similar reductions.

Summary and Implications: Isospectral Graph Reductions

- The process of reducing a graph can be done knowing only the local structure of the graph.
- The techniques applied in graph reductions can be used for optimal design, in the sense of structural simplicity of dynamical networks with prescribed dynamical properties ranging from synchronizability to chaoticity.
- It is possible to reduce a graph over specific weight sets.

Summary and Implications: Eigenvalue Estimates

- Gershgorin and Brauer-type estimates of σ(G) improve as the graph G is reduced.
- Brualdi-type estimates of σ(G) can be improved by reducing over specific types of structural sets.
- This process can be used to improve eigenvalue estimates to any desired degree.
- Graph reductions decrease the number of subregions needed to compute the Gershgorin, Brauer, and Brualdi-type regions simplifying the computational procedure.
- Applications include, estimating the spectrum of the Laplacian matrix of a graph and estimating the spectral radius of a given matrix.

・ロン ・回 と ・ヨン ・ヨン

References

References

 V. S. Afriamovich, L. A. Bunimovich, Dynamical networks: interplay of topology, interactions, and local dynamics, *Nonlinearity* 20, 1761-1771 (2007)

[2] R. Albert, A-L. Barabási, Statistical mechanics of complex networks, Rev. Mod. Phys. 74, 47-97 (2002).

[3] M. L. Blank, L. A. Bunimovich, Long range action in networks of chaotic elements, Nonlinearity 19, 329-344 (2006).

[4] A. Brauer, Limits for the characteristic roots of a matrix II, Duke Math J. 14, 21-26 (1947).

[5] R. Brualdi, Matrices, Eigenvalues, and Directed Graphs, Lin. Multilin. Alg. 11 143-165 (1982).

[6] L. A. Bunimovich, B. Z. Webb, Dynamical Networks, Isospectral Graph Reductions, and Improved Estimates of Matrices Spectra, arXiv, arXiv:0911.2453v1, submitted.

[7] L. A. Bunimovich, B. Z. Webb, Isospectral Graph Reductions, arXiv, arXiv:0909.0053v1, submitted.

[8] S. N. Dorogovtsev, J.F.F. Mendes, Evolution of Networks: From Biological Networks to the Internet and WWW, Oxford: Oxford Univ. Press, 2003.

[9] S. Gershgorin, Über die Abgrenzung der Eigenwerte einer Matrix, Izv. Akad. Nauk SSSR Ser. Mat. 1, 749-754 (1931).

[10] M. Newman, A-L. Barabási, D. J. Watts (ed), *The Structure of Dynamic Networks*, Princeton: Princeton Univ. Press, 2006.

[11] S. Strogatz, Sync: The Emerging Science of Spontaneous Order, New York: Hyperion, 2003.

[12] R. S. Varga, Gershgorin and His Circles, Germany: Springer-Verlag Berlin Heidelberg, 2004.

イロト イヨト イヨト イヨト