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Data Assimilation - DA overview

Data Assimilation is the entire sequence of operations that, starting from the

observations and possibly from a statistical/dynamical knowledge about a system,

provides an estimate of its state
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provides an estimate of its state

The main fields of applications in geophysics are:

initialize weather prediction

produce reanalysis

parameter estimation (especially for seasonal and climate prediction)
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Data Assimilation - DA overview

Data Assimilation is the entire sequence of operations that, starting from the

observations and possibly from a statistical/dynamical knowledge about a system,

provides an estimate of its state

Typical sources of informations are:

observations (synoptic profiles, onboard mesaurements, remote sensing,
etc...)

background field (climatological, short range forecast)

evolution dynamics (set of differential equations, numerical model ...)

from M.G.Bosilovich (2008)
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Data Assimilation - DA overview

controlling errors: what about model error ?

Data assimilation has to deal with:

initial condition error =⇒ improved obs coverage - advanced DA
algorithms
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Data Assimilation - DA overview

controlling errors: what about model error ?

Data assimilation has to deal with:

initial condition error =⇒ improved obs coverage - advanced DA
algorithms

model error =⇒ ?

Nowadays model error is recognized as a main source of uncertainty in
NWP, seasonal and climate prediction

Fundamental problems making difficult an adequate treatment of model
error in data assimilation:

1 large variety of possible error sources

2 the amount of available data insufficient to realistically describe the
model error statistics

3 lack of a general framework for model error dynamics and statistics
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General framework for model error dynamics

Formulation

Let assume to have the model:

dx(t)

dt
= f (x, λ)

used to describe the true process:

dy(t)

dt
= f (y, λ

′
) + ǫg(y, λ

′
)

g(y(t), λ
′

) represents the dynamics associated to processes not accounted for by

the model.
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General framework for model error dynamics

Estimation error evolution in the linear approximation

δx(t) ≈ Mt,t0δx0 +

∫ t

t0

dτMt,τδµ(τ) = δxic (t) + δxm(t)

where

δµ =
∂f

∂λ
|λδλ+ γg(y(t), λ

′
)
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δx(t) ≈ Mt,t0δx0 +

∫ t

t0

dτMt,τδµ(τ) = δxic (t) + δxm(t)

where

δµ =
∂f

∂λ
|λδλ+ γg(y(t), λ

′
)

The model error acts as a deterministic process

The important factor controlling the evolution is δµ(t)

In view of the presence of the propagator M, the flow instabilities are
expected to influence the model error dynamics
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General framework for model error dynamics Modeling error statistics

Model error covariance and correlation

Model error covariance

Pm(t) =

∫ t

t0

dτ

∫ t

t0

dτ
′
Mt,τ < (δµ(τ))(δµ(τ

′
))T ) > MT

t,τ ′
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′
))T ) > MT

t,τ ′

Model error correlation

Pm(t1, t2) =

∫ t1

t0

dτ

∫ t2

t0

dτ
′
Mt1,τ < δµ(τ)δµ(τ

′
)T > MT

t2,τ
′

These covariance and correlations are exactly what we need in DA !

These equations are NOT suitable for realistic geophysical
applications - Some approximation is necessary
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General framework for model error dynamics Modeling error statistics for geophysical systems

Short time approximation

Model error covariance

Pm(t) ≈< δµ0δµ
T
0 > (t − t0)

2
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Short time approximation
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Model error correlation

Pm(t1, t2) ≈< δµ0δµ
T
0 > (t1 − t0)(t2 − t0)

The model error covariance and correlation evolve quadratically in the short-time.

The main factor determining this evolution is the covariance of δµ at t = t0,
Q =< δµ0δµT

0 >.

The covariance Q embeds the information on the model error through δλ and the
functional dependence of the dynamics on the parameters.

Once Q is known Pm at any time within the short time regime can be computed

Can these short-time approximations be incorporated in data assimilation procedures to
account for model error ?
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Sequential Data Assimilation - EKF

Extended Kalman Filter in the presence of model error -

Deterministic formulation

Input xa , Pa

Forecast: xf = M(xi ) — Pf = MPaMT + Pm

Analysis: xa = [I − KH] xf + Kyo — Pa = [I − KH]Pf

Pm - Model Error Covariance Matrix

Estimate Pm using the short time approximation: Pm = Qτ2
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Forecast: xf = M(xi ) — Pf = MPaMT + Pm

Analysis: xa = [I − KH] xf + Kyo — Pa = [I − KH]Pf

Pm - Model Error Covariance Matrix

Estimate Pm using the short time approximation: Pm = Qτ2

...needs to estimate Q; two solutions analyzed:

1 Estimate Q - Statistically based on some a priori information

2 Estimate Q - Dynamically (on the fly) using a state/parameter assimilation
scheme

In standard EKF, model error is assumed to be a white-noise and Pm represents the covariance of the process
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Sequential Data Assimilation - EKF

Results EKF - Case (1) Q statistical estimate Carrassi,Vannitsem&Nicolis (2008) QJRMS

Observation System Simulation Experiments

Prototype of nonlinear chaotic dynamics (Lorenz, 1996):
dxi
dt

= α(xi+1 − xi−2)xi−1 − βxi + F 1 ≤ i ≤ 36
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Sequential Data Assimilation - EKF

Results EKF - Case (2) Q online estimate

Q estimated online by assimilating observations - State Augmented formulation

augmented system z = (M(x),F(λ))T
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Variational Data Assimilation

4DVar in the presence of model error - Weak Constraint deterministic formulation

 

 

analysis
observations

Assimilation Interval

assimilate observations distributed over the time window τ
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Estimate model error correlation using P(t1, t2) ≈ Q(t1 − t0)(t2 − t0)

In the standard weak-constraint 4DVar, model error is assumed to be white in time ⇒

Only the model error covariances Pm
t need to be estimated
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Variational Data Assimilation

Results weak-constraint 4DVar Carrassi&Vannitsem (2010) MWR

Lorenz 3-variable (1963) system
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Conclusion

Conclusions and Perspectives

the deterministic treatment of model error in DA systematically outperformed the
standard white noise approach
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Conclusion

Conclusions and Perspectives

the deterministic treatment of model error in DA systematically outperformed the
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