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Data Assimilation - DA overview

Data Assimilation is the entire sequence of operations that, starting from the

observations and possibly from a statistical /dynamical knowledge about a system,
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Data Assimilation is the entire sequence of operations that, starting from the

observations and possibly from a statistical /dynamical knowledge about a system,

provides an estimate of its state

The main fields of applications in geophysics are:
@ initialize weather prediction
@ produce reanalysis

@ parameter estimation (especially for seasonal and climate prediction)
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Data Assimilation - DA overview

Data Assimilation is the entire sequence of operations that, starting from the

observations and possibly from a statistical /dynamical knowledge about a system,

provides an estimate of its state

Typical sources of informations are:

@ observations (synoptic profiles, onboard mesaurements, remote sensing,
etc...)

@ background field (climatological, short range forecast)

@ evolution dynamics (set of differential equations, numerical model ...)
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Data Assimilation - DA overview

controlling errors: what about model error ?

Data assimilation has to deal with:

@ initial condition error = improved obs coverage - advanced DA
algorithms
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Data Assimilation - DA overview

controlling errors: what about model error ?

Data assimilation has to deal with:

@ initial condition error = improved obs coverage - advanced DA
algorithms

@ model error = ?

Nowadays model error is recognized as a main source of uncertainty in
NWP, seasonal and climate prediction

Fundamental problems making difficult an adequate treatment of model
error in data assimilation:

O large variety of possible error sources

© the amount of available data insufficient to realistically describe the
model error statistics

© lack of a general framework for model error dynamics and statistics
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General framework for model error dynamics
Formulation

Let assume to have the model:

dx(t)
dt

= f(x, )

used to describe the true process:

dh;_(tf) = f(y,\) +eg(y,\)

g(y(t), \") represents the dynamics associated to processes not accounted for by

the model.
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General framework for model error dynamics

Estimation error evolution in the linear approximation

t .
Ix(t) &~ My %0 +/ dTM; du(r) = 6x"(t) + ox™(t)

to
where
Spu = af\ SX 4+ vg(y(t),\)
n= 3N A Y8 Y\L),
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General framework for model error dynamics

Estimation error evolution in the linear approximation

t .
Ix(t) &~ My %0 +/ dTM; du(r) = 6x"(t) + ox™(t)

to
where
Spu = af\ SX 4+ vg(y(t),\)
n= 3N A Y8 Y\L),

@ The model error acts as a deterministic process
@ The important factor controlling the evolution is du(t)

@ In view of the presence of the propagator M, the flow instabilities are
expected to influence the model error dynamics

M

RMI

A. Carrassi - a.carrassi@oma.be (RMI) DA and model error 27 January 2010 7/15



General framework for model error dynamics Modeling error statistics

Model error covariance and correlation

Model error covariance

P (¢) = /t Cdr /t 4 Mes < () )T) > MY
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General framework for model error dynamics Modeling error statistics

Model error covariance and correlation

Model error covariance
t t
Pm(t) = / dr / d7' My < (5u(r))ou(r )T) > M,
to to

Model error correlation

t, T

t t ’ ’
P™(t1,t2) = / dT/ dr My, < ou(T)ou(r )T >MT
to to
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General framework for model error dynamics Modeling error statistics

Model error covariance and correlation

Model error covariance
t t
Pm(t) = / dr / d7' My < (5u(r))ou(r )T) > M,
to to

Model error correlation

t, T

t t ’ ’
P™(t1,t2) = / dT/ dr My, < ou(T)ou(r )T >MT
to to

These covariance and correlations are exactly what we need in DA !
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General framework for model error dynamics Modeling error statistics

Model error covariance and correlation

Model error covariance
t t
Pm(t) = / dr / d7' My < (5u(r))ou(r )T) > M,
to to

Model error correlation

t1 to
4 'NT T
P™(t1,t2) = /t dT/t dr My, - < dp(7)op(r )" > M,
0 0
These covariance and correlations are exactly what we need in DA !

These equations are NOT suitable for realistic geophysical
applications - Some approximation is necessary
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General framework for model error dynamics Modeling error statistics for geophysical systems

Short time approximation

Model error covariance

P™(t) ~< dpodpg > (t — to)?
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Short time approximation

Model error covariance
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Model error correlation
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General framework for model error dynamics Modeling error statistics for geophysical systems

Short time approximation

Model error covariance
m T 2
P™(t) =< dpodpg > (t — to)

Model error correlation

P™(t1, 1) ~< Sp0dpg > (1 — to)(t2 — to)

@ The model error covariance and correlation evolve quadratically in the short-time.

@ The main factor determining this evolution is the covariance of du at t = tp,
Q =< dpodpd >.
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General framework for model error dynamics Modeling error statistics for geophysical systems

Short time approximation

Model error covariance

P™(t) ~< dpodpg > (t — to)?

Model error correlation

P™(t1, 1) ~< Sp0dpg > (1 — to)(t2 — to)

@ The model error covariance and correlation evolve quadratically in the short-time.
@ The main factor determining this evolution is the covariance of du at t = tp,
Q =< dpodpd >.
@ The covariance Q embeds the information on the model error through 6\ and the
functional dependence of the dynamics on the parameters.

@ Once Q is known P™ at any time within the short time regime can be computed

Can these short-time approximations be incorporated in data assimilation procedures to

account for model error ?
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Sequential Data Assimilation - EKF

Extended Kalman Filter in the presence of model error -

Deterministic formulation

Input x?, P?

lForecast: x = M(x)) — Pf = MP°MT + P”’l

[ Analysis: x* = [I — KH]x” + Ky® — P° = [I — KH]P']

P™ - Model Error Covariance Matrix

Estimate P using the short time approximation: P™ = Q72
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Extended Kalman Filter in the presence of model error -

Deterministic formulation

Input x?, P?

lForecast: x = M(x)) — Pf = MP°MT + P”’l

[ Analysis: x* = [I — KH]x” + Ky® — P° = [I — KH]P']

P™ - Model Error Covariance Matrix
Estimate P using the short time approximation: P™ = Q72

...needs to estimate Q; two solutions analyzed:
@ Estimate Q - Statistically based on some a priori information

© Estimate Q - Dynamically (on the fly) using a state/parameter assimilation
scheme
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lForecast: x = M(x)) — Pf = MP°MT + P”’l

[ Analysis: x* = [I — KH]x” + Ky® — P° = [I — KH]P']

P™ - Model Error Covariance Matrix
Estimate P using the short time approximation: P™ = Q72

...needs to estimate Q; two solutions analyzed:
@ Estimate Q - Statistically based on some a priori information

© Estimate Q - Dynamically (on the fly) using a state/parameter assimilation
scheme
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Sequential Data Assimilation - EKF

Results EKF = Case (1) Q Statistica| estimate Carrassi,Vannitsem&Nicolis (2008) QJRMS

Observation System Simulation Experiments

@ Prototype of nonlinear chaotic dynamics (Lorenz, 1996): % = a(xjiy1 — Xj_2)xi—1 — Bx; + F 1<i<36
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Sequential Data Assimilation - EKF

Results EKF = Case (1) Q Statistical estimate Carrassi,Vannitsem&Nicolis (2008) QJRMS

Observation System Simulation Experiments
@ Prototype of nonlinear chaotic dynamics (Lorenz, 1996): % = a(xjiy1 — Xj_2)xi—1 — Bx; + F 1<i<36
[+ Homogeneous network of 18 noisy observations of the state

@ Random parametric error (Gaussian sample) S\ € N(C;/Cyy, o).

Q estimated a-priori - average on a sample of system realizations Q =< d,u(x)d,u(x)T >
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Sequential Data Assimilation - EKF

Results EKF - Case (2) Q online estimate

Q estimated online by assimilating observations - State Augmented formulation
@ augmented system z = (M(x), F(A)) T
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Results EKF - Case (2) Q online estimate

Q estimated online by assimilating observations - State Augmented formulation
@ augmented system z = (M(x), F(A))T
@ at analysis time the state and parameters are estimated along with their associated uncertainty (covariances)
@ the updated parametric error covariance, P3 =< SA6AT >, is then used to update Q = P™
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Variational Data Assimilation

4DVar in the presence of model error - Weak Constraint deterministic formulation

@ assimilate observations distributed over the time window 7
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Variational Data Assimilation

r in the presence of model error - Weak Constraint deterministic formulation

@ assimilate observations distributed over the time window 7
@ analysis state as the minimum of a cost-function:

M
T T
2J:/ /(5xg)T(Pm);}2(5xg)dt1dt2+ZekTR;1ek+e[B—1eb
0 0 k=1
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Variational Data Assimilation

4DVar in the presence of model error - Weak Constraint deterministic formulation

@ assimilate observations distributed over the time window 7
@ analysis state as the minimum of a cost-function:

M
T T
2) = /0 /0 (OxT)T(P™)L (XM dtadts + 3 e Ry ey + ] BLey
k=1
Estimate model error correlation using P(t1,t) ~ Q(t1 — to)(t2 — to)

@ In the standard weak-constraint 4DVar, model error is assumed to be white in time = R.‘
Only the model error covariances P{" need to be estimated
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Variational Data Assimilation

Results weak-constraint 4DVar Carrassi&Vannitsem (2010) MWR

@ Lorenz 3-variable (1963) system
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Variational Data Assimilation

Results weak-constraint 4DVar Carrassi&Vannitsem (2010) MWR

@ Lorenz 3-variable (1963) system
@ Assimilation interval 7 = 8 time-steps, Obs frequency At,ps = 2 time-steps
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Variational Data Assimilation

Results weak-constraint 4DVar

@ Lorenz 3-variable (1963) system

Carrassi&Vannitsem (2010) MWR

@ Assimilation interval 7 = 8 time-steps, Obs frequency At,ps = 2 time-steps
@ Random parametric error (Gaussian sample) d\ € N(0, AX/))

MY = 10%

0.25, . -
—strong constraint
—— Deterministic weak—constraint
—White noise weak—constraint
0.2 b

analysis error variance

0.051
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Conclusion

Conclusions and Perspectives

@ the deterministic treatment of model error in DA systematically outperformed the
standard white noise approach
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Conclusions and Perspectives

@ the deterministic treatment of model error in DA systematically outperformed the
standard white noise approach

@ it allows for the estimation of the model error covariance

@ in conjunction with the state augmentation formulation it provides a state-dependent
estimate of the model error covariance and overcomes the need for a-priori information on
model deficiencies

@ it provides a way to introduce the model error correlations in the weak-constraint
variational assimilation

@ the model error statistics are easily adaptable to different observational frequencies and/or
assimilation intervals

Future directions:

@ application to more realistic model and observational scenarios

@ application of the deterministic approach with the state augmentation formulation for the
state and parameter estimation for seasonal and climate predictions
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