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The system of two coupled van der Pol oscillators is the basic model of nonlinear 
dynamics demonstrating the phenomenon of mutual synchronization. There are many 
papers on this theme, because this system demonstrates a lot of interesting oscillation 
regimes and types of behavior, such as synchronous and quasiperiodic regimes, the 
“oscillator death” effect, etc.: A. Pikovsky, M. Rosenblum, J. Kurths [2001], D. G. 
Aronson , G. B. Ermentrout, N. Kopell [1990], R. H. Rand, P. J. Holmes [1980], D. W. 
Storti, R. H. Rand [1982], M. V. Ivanchenko, G. V. Osipov, V. D. Shalfeev, J. Kurths 
[2004]. In this work we carry out the investigation of the parameter space structure and of 
possible oscillation regimes in the dissipatively coupled van der Pol oscillators with non-
identical controlling parameters. 

1. Internal synchronization 
The system describing the interaction between two van der Pol oscillators 
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1  and 2  are controlling parameters in autonomous oscillators;   is parameter of 
nonlinear dissipation;   is the frequency mismatch between the autonomous second and 
first oscillators;   is the coefficient of dissipative coupling. 

1.1. Investigation by means of the method 
of dynamic regime chart construction 

We use the method of dynamic regime chart construction. Within the framework of 
such a method we mark the oscillation period of the system of coupled oscillators by 
means of different colors on the parameter plane frequency mismatch   – coupling 
value  . White coloring corresponds to the chaotic or quasiharmonic motions. Cycle 
periods were calculated by means of the Poincare section method: this is the number of 
points of intersection of the phase trajectory on the attractor and the surface 0y  
selected as the Poincare section. Only those crossings were taken into account that 
correspond to the trajectories coming to the surface from the one side. 

Boundary between the oscillator death area and the area of quasiperiodic regimes in 
case of non-identical in control parameters oscillators is not a line but a band of finite 
width in coupling parameter 1 2      which stretches infinitely into the area of 
increased frequency mismatch. We call an existence of synchronization in  presence of 
arbitrarily large values of eigenfrequency mismatch as “Broadband synchronization”. 

In case of distinctly different values of parameters 1  and 2  there is an explanation 
for the appearance of broadband synchronization. If   exceeds both 1  and 2 , both 
oscillators are behind the threshold of the “oscillator death” effect. In the range of 
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1 2      only the 2-nd oscillator appears to be essentially dissipative. The 1-st oscillator 
appears to be leading and excites the 2-nd oscillator. So different scales along the 
coordinate axes on the phase plane portraits for the 1-st and the 2-nd oscillators are quite 
characteristic. 

Non-identity of nonlinear dissipation results in specific form of the boundary of the 
main synchronization tongue, which looks like letter S. 

Physical explanation. Oscillators are closely approximated by control parameters in 
area of small values of coupling parameter. Size of the limit cycle of the 2-nd oscillator is 
essentially greater than this one of the 1-st oscillator due to small relative nonlinear 
dissipation. So the 2-nd oscillator dominates over the 1-st one. Dissipative coupling causes 
damping of self-oscillations of the 2-nd oscillator with the transition across the line 

2   . Now the 1-st oscillator becomes the leading one. In region, where coupling 
parameter takes intermediate values, there is no leading oscillator. It is clearly seen from 
the phase portraits. 

Case of identical oscillators 1 2 1    , 1   

Case of non-identical oscillators  
Non-identical parameters, controlling the Hopf bifurcation 1 1.25  , 2 1  ,  

Identical parameters of nonlinear dissipation 1   
 

 
 

 

 

 

 

 

 

 

Case of non-identical oscillators  

Non-identical parameters, controlling the Hopf bifurcation 1 2  , 2 1  ,  

“Broadband synchronization” area 

leading oscillator driven oscillator 
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Non-identical parameters of nonlinear dissipation 0.01   

1.2. Analysis of the broadband synchronization by means of 
slow-flow equations 

We define within the framework of quasiharmonic approximation: 
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The upper boundary of broadband synchronization area is the boundary of oscillator 
death area, so: 
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To obtain an expression for the lower boundary of broadband synchronization area 
we set 
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Then we obtain equations for amplitudes R, r of oscillators and their relative phase ψ: 
3
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Steady amplitudes of limit cycles: 
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then the lower boundary of broadband synchronization area is 
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Analytic boundaries of the main synchronization area 

 
 

Bifurcation analysis 
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1.3. Experimental system 
Non-identical parameters, controlling the Hopf bifurcation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case of identical oscillators Case of non-identical oscillators 
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Non-identity in nonlinear dissipation 

To provide different nonlinear dissipation in active oscillators we use different 
number of diodes in the active oscillators: 10 diodes in the 1-st generator and 2 diodes in 
the 2-nd generator. 

 

 

 

 

 

 

 

 

 

 

2. External synchronization 
Consider the system of two coupled van der Pol oscillators under external influence 

 
 

2
1

2
2

( ) 1 ( ) sin ,2

( ) 1 ( ) 0.2

x x x x x y B t

y y y y y x

         

        

   

   
   (12) 

1  and 2  are parameters characterizing the excess above the threshold of the Andronov – 
Hopf bifurcation in autonomous oscillators;  is the frequency mismatch between the 
autonomous oscillators;   is the coefficient of dissipative coupling; B is the amplitude of 
external influence;   is the frequency of external influence. 

2.1 Analysis by means of slow-flow equations 
* , *i t i t i t itx ae a e y be b e        ,   (13) 
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Equations for amplitudes R, r of oscillators and their phases ψ1, ψ2: 
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1 1.2  , 

2 0.6   
1 1.2  , 

2 0.34 
 

1 0.35  , 

2 1.2   
1 0.6  , 

2 1.2   

0.3  , 1   
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fundamental frequencies of 

the 1-st and the 2-nd oscillators 

Steady amplitudes of limit cycles:      1 2,R r      .                   (17) 
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Phase locking condition 1 2d d
dt dt
 

  leads to the equations for boundaries of the 

synchronization area: 
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Analytic boundaries of the synchronization area (Red color) 
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2.2 Parameter planes 
For construction of the parameter plane we calculate two Liapunov exponents 1 2,   in 
each point of the parameter plane frequency   – amplitude b  of external influence. Then 
we mark following regimes by different colors: 

- Red color P – existence of stable fixed point (phase locking), 1 20, 0    ; 
- YYeellllooww  ccoolloorr T2 – quasiperiodic regime, which corresponds to the double-

frequency torus, 1 20, 0    ; 
- Blue color T3 – quasiperiodic regime, which corresponds to the three-frequency 

torus, 1 20, 0    . 
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Conclusions 
 Possibility of a special synchronization regime on the parameter plane frequency 

mismatch   – coupling value   in an infinitively long band between oscillator death 
and quasiperiodic areas is shown for dissipatively coupled van der Pol oscillators, 
non-identical in values of parameters controlling the Hopf bifurcation. Width of this 
band depends on the difference of control parameters 1 2   . 

 Non-identity in nonlinear dissipation results in specific form of the boundary of the 
main synchronization tongue, which looks like letter S on the parameter plane 
frequency mismatch   – coupling value  . 

 The phase locking area and quasiperiodic areas, which correspond to the double- and 
three-frequency tori, were found for dissipatively coupled van der Pol oscillators 
under external harmonic influence on the parameter plane frequency   – amplitude 
b  of external influence. 

 The results of numerical investigation are in close fit with the results of analytical and 
experimental investigation. 
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