Characterizing nonlinear dynamics

with covariant Lyapunov vectors

Francesco Ginelli

Institut des Systèmes Complexes Paris IIe de France & CEA/Saclay

Joint work with:

A Politi, R. Livi, H. Chaté, K.A. Takeuchi, P. Poggi, A. Turchi

ECODYC10 25/1/2010

Lyapunov Exponents

• Chaotic dynamics is characterized by exponential sensitivity to initial conditions:

$$\left\|\delta \vec{x}_{t}\right\| \approx \left\|\delta \vec{x}_{0}\right\| \cdot \exp[\lambda_{1} t] \qquad t >> 1$$

 $\frac{d}{dt}\vec{x}_t = \vec{\mathbf{F}}(\vec{x}_t)$

 $\vec{x}_{t+1} = \vec{\mathbf{F}}(\vec{x}_t)$

• Tangent evolution of linearized perturbations is ruled by the *Jacobian*:

$$\mathbf{J}_{t} : [\mathbf{J}_{t}]_{\mu\nu} = \frac{\partial F_{\mu}(\vec{x}_{t})}{\partial x_{\nu}}$$

$$\delta \vec{x}_t = \mathbf{M}(\vec{x}_0, t) \ \delta \vec{x}_0$$

$$\mathbf{M}(\vec{x}_0, t) = \left(\mathbf{J}_{t-1}\mathbf{J}_{t-2}\cdots\mathbf{J}_{t_0+1}\mathbf{J}_{t_0}\right)$$

 $\frac{d}{dt}\mathbf{M}(\vec{x}_0, t) = \mathbf{J}_t \mathbf{M}(\vec{x}_0, t) \qquad \mathbf{M}(\vec{x}_0, 0) = \mathbf{I}$

Lyapunov Exponents

• The existence of a complete set of N LEs is granted by the Oseledets multiplicative theorem:

$$\Lambda_{+}(\vec{x}_{0}) = \lim_{t \to \infty} \left[\mathbf{M}^{\mathrm{T}}(\vec{x}_{0}, t) \mathbf{M}(\vec{x}_{0}, t) \right]^{\frac{1}{2t}}$$

- $\Lambda_{+}(\vec{x}_{0})\vec{e}_{+}^{j}(\vec{x}_{0}) = \gamma_{j} \vec{e}_{+}^{j}(\vec{x}_{0})$
- $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_N$ $\lambda_j = \ln \gamma_j$
- There exist a sequence of nested subspaces connected with these growth rates:

$$\mathbf{R}^{N} = \Gamma_{\vec{x}_{0}}^{(1)} \supset \Gamma_{\vec{x}_{0}}^{(2)} \supset \cdots \supset \Gamma_{\vec{x}_{0}}^{(N)} \qquad \lambda_{j} \quad \text{exp. growth rate of } \vec{u} \in \Gamma_{\vec{x}_{0}}^{(j)} \setminus \Gamma_{\vec{x}_{0}}^{(j+1)}$$

 $\dim\left(\Gamma_{\bar{x}_0}^{(j)}\right) = N - j + 1$

- LEs quantify the growth of volumes in tangent space
- Entropy production (Kolmogorov-Sinai entropy):

$$H_{KS} = \sum_{\lambda_i > 0} \lambda_i$$

• Attractor dimension in dissipative systems (Kaplan Yorke Formula)

$$D_{KY} = k + \frac{\sum_{i=1}^{k} \lambda_i}{|\lambda_{k+1}|}$$

• There exist a thermodynamic limit for Lyapunov spectra in spatially ext. systems:

Lyapunov Vectors ?

- After exponents (i.e. eigenvalues), people got interested in vectors (i.e. eigenvectors ?) to quantify stable and unstable directions in tangent space.
- Hierarchical decomposition of spatiotemporal chaos
- Optimal forecast in nonlinear models (e.g. in geophysics)
- Study of "hydrodynamical modes" in near-zero exponents and vectors (access to transport properties ?)

But... which vectors ?

• i.e. bred vectors, singular vectors, Gram Schmidt vectors, covariant vectors...

Gram Schmidt vectors

Gram Schmidt vectors are obtained by GS orthogonalization (Benettin *et al.* 1980)

 $\tilde{\mathbf{G}}_{t} = \left(\tilde{g}_{t}^{1} | \cdots | \tilde{g}_{t}^{N}\right)$

$$\mathbf{Q}_t = \left(g_t^{\ 1} \middle| \cdots \middle| g_t^{\ N}\right)$$

- It can be shown that any orthonormal set of vectors eventually converge to a well defined basis (*Ershov and Potapov*, 1998)
- For time-invertible systems they coincide with the eigenvectors of the backward Oseledec matrix:

$$\vec{g}^{j} \rightarrow \vec{e}_{-}^{N-j+1}$$
 $\Lambda_{-}(x_{0}) = \lim_{t \rightarrow -\infty} \left[\mathbf{M}^{-1}(x_{0},t)^{T} \mathbf{M}^{-1}(x_{0},t) \right]^{1/2t}$

But...

• They are orthogonal, while *stable* and *unstable* manifolds are generally not.

- Dynamical properties are "washed away" by orthonormalization, which is norm dependent, while LEs are not (for a wide class of norms).
- They are not invariant under time reversal, while LEs are (sign-wise):

$$\vec{g}_{+}^{j} \neq \vec{g}_{-}^{N-j+1}$$
 $\lambda^{+}_{j} = -\lambda^{-}_{N-j+1}$

• They are not covariant with dynamics and do not yield correct growth factors:

$$\mathbf{M}(\vec{x}_{t}, t + \Delta t)\vec{g}_{t}^{\ j} \neq \gamma_{t,\Delta t}^{(j)}\vec{g}_{t+\Delta t}^{\ j}$$
$$\vec{g}_{t}^{\ j} \equiv \vec{g}^{\ j}(\vec{x}_{t})$$

$$\left< \ln \left\| \mathbf{M}(\vec{x}_t, t + \Delta t) \vec{g}_t^{\ j} \right\| \right> \neq \lambda_j$$

Covariant Lyapunov vectors *v*

 $\prod_{i=1}^{N} \left[\sum_{i=1}^{N} \left(N_{i+1} \right) \right]$

• Oseledets (1968) & Ruelle (1979) – Oseledets splitting

$$\vec{v}^{j} \text{ spans } \mathbf{E}_{\vec{x}_{0}}^{(j)} = \Gamma_{\vec{x}_{0}}^{(j)} \cap \overline{\Gamma}_{\vec{x}_{0}}^{(N-j+1)}$$

$$\underbrace{\dim[\Gamma_{\vec{x}_{0}}^{(j)}] = N-j+1}_{\dim[\Gamma_{\vec{x}_{0}}^{(j)}] = N-j+1}$$

 $\Gamma_{\vec{x}_{0}}^{(j)} = \mathbf{U}_{+}^{(J)}(\vec{x}_{0}) \oplus \cdots \oplus \mathbf{U}_{+}^{(N)}(\vec{x}_{0})$ $\overline{\Gamma}_{\vec{x}_{0}}^{(N-j+1)} = \mathbf{U}_{-}^{(1)}(\vec{x}_{0}) \oplus \cdots \oplus \mathbf{U}_{-}^{(j)}(\vec{x}_{0})$ $\mathbf{U}_{\pm}^{(J)}(\vec{x}_{0}) \qquad \text{eigenspaces of } \Lambda_{\pm}(\vec{x}_{0})$

$$\dim\left[\Gamma_{\vec{x}_{0}}^{(j)}\right] = N - j + 1 \qquad \dim\left[\overline{\Gamma}_{\vec{x}_{0}}^{(j)}\right] = j$$

• They are covariant with dynamics and do yield correct growth factors (LEs):

$$\mathbf{M}(\vec{x}_{t}, t + \Delta t)\vec{v}_{t}^{j} = \gamma_{j}\vec{v}_{t+\Delta t}^{j} \qquad \left\langle \ln \left\| \mathbf{M}(\vec{x}_{t}, t + \Delta t)\vec{v}_{t}^{j} \right\| \right\rangle = \lambda_{j}$$

After Ruelle

- Brown, Bryant & Abarbanel (1991) Covariant vectors in time series data analysis
- Legras & Vautard; Trevisan & Pancotti (1996) Covariant vectors in Lorenz 63
- Politi et. al. (1998) Covariant vectors satisfy a node theorem for periodic orbits
- Wolfe & Samelson (2007) Intersection algorithm, more efficient for $j \ll N$

Lack of a practical algorithm to compute them No studies of ensemble properties in large systems

Computing covariant Lyapunov Vectors v by forward-backward iterations

 $\begin{bmatrix} \mathbf{C}_t \end{bmatrix}_{ij} = c_t^{ij} = \left(\vec{g}_t^i \cdot \vec{v}_t^j\right)$ $\vec{v}_t^{\ j} = \sum_{i=1}^j c_t^{ij} \vec{g}_t^i$

Consider vectors which are linear combinations of the first *j* Gram-Schmidt vectors *g*

 $\sum_{t=1}^{j} \left[c_t^{ij} \right]^2 = 1$

1. R evolves the coefficients C according to tangent dynamics

Diag matrix w. local growth factors

Covariant evolution means:

(Expand CLV on GS basis)

$$V_{t+\Delta t} \Delta_{t,\Delta t} = \mathbf{M}_{t,\Delta t} \mathbf{V}_{t} \qquad \left(\mathbf{M}_{t,\Delta t} = \mathbf{M}(\vec{x}_{t}, t+\Delta t)\right)$$
$$\left(v_{t}^{1} | v_{t}^{2} | \cdots | v_{t}^{N} \right) \equiv \mathbf{V}_{t} = \mathbf{Q}_{t} \mathbf{C}_{t}$$
$$\mathbf{Q}_{t+\Delta t} \mathbf{C}_{t+\Delta t} \Delta_{t,\Delta t} = \mathbf{M}_{t,\Delta t} \mathbf{Q}_{t} \mathbf{C}_{t}$$
$$\mathbf{M}_{t,\Delta t} \mathbf{Q}_{t} = \tilde{\mathbf{G}}_{t+\Delta t} = \mathbf{Q}_{t+\Delta t} \mathbf{R}_{t,\Delta t}$$

(use QR decomposition)

one gets the evolution rule

 $\mathbf{C}_{t+\Delta t}\,\Delta_{t,\Delta t} = \mathbf{R}_{t,\Delta t}\mathbf{C}_t$

 $\mathbf{Q}_{t+\Delta t}\mathbf{C}_{t+\Delta t}\Delta_{t,\Delta t} = \mathbf{Q}_{t+\Delta t}\mathbf{R}_{t,\Delta t}\mathbf{C}_{t}$

2. Moving backwards insures convergence to the "right" covariant vectors

$$\mathbf{R}_{t,\Delta t}^{-1} \tilde{\mathbf{C}}_{t+\Delta t} \tilde{\Delta}_{t,\Delta t} \to \mathbf{C}_{t}$$

(consider two different random initial conditions)

$$\tilde{\mathbf{C}}_{t+\Delta t} \,\tilde{\Delta}_{t,\Delta t} = \mathbf{R}_{t,\Delta t} \tilde{\mathbf{C}}_{t} \qquad \qquad \tilde{\tilde{\mathbf{C}}}_{t+\Delta t} \,\tilde{\tilde{\Delta}}_{t,\Delta t} = \mathbf{R}_{t,\Delta t} \tilde{\tilde{\mathbf{C}}}_{t}$$

A. If C are *upper triangular with non-zero diagonal*, one can verify that

$$\tilde{\Delta}_{t,\Delta t}$$
, $\tilde{\Delta}_{t,\Delta t}$ $\xrightarrow{\Delta t \to \pm \infty}$ $\operatorname{diag}\left(e^{\pm\Delta t\,\lambda_{1}}, e^{\pm\Delta t\,\lambda_{2}}, \cdots, e^{\pm\Delta t\,\lambda_{N}}\right)$

B. By simple manipulations

$$\mathbf{R}_{t,\Delta t} = \tilde{\mathbf{C}}_{t+\Delta t} \,\tilde{\Delta}_{t,\Delta t} \tilde{\mathbf{C}}_{t}^{-1} = \tilde{\tilde{\mathbf{C}}}_{t+\Delta t} \,\tilde{\tilde{\Delta}}_{t,\Delta t} \tilde{\tilde{\mathbf{C}}}_{t}^{-1}$$

$$\Rightarrow \left[\tilde{\tilde{\mathbf{C}}}_{t+\Delta t}^{-1}\tilde{\mathbf{C}}_{t+\Delta t}\right] = \tilde{\tilde{\Delta}}_{t,\Delta t}\left[\tilde{\tilde{\mathbf{C}}}_{t}^{-1}\tilde{\mathbf{C}}_{t}\right]\tilde{\Delta}_{t,\Delta t}^{-1}$$

(by matrix components)

$$\Rightarrow \left[\tilde{\tilde{\mathbf{C}}}_{t+\Delta t}^{-1}\tilde{\mathbf{C}}_{t+\Delta t}\right]_{\mu\nu} \xrightarrow{\Delta t \to \pm\infty} \exp\left[\Delta t\left(\lambda_{\mu}-\lambda_{\nu}\right)\right] \left[\tilde{\tilde{\mathbf{C}}}_{t}^{-1}\tilde{\mathbf{C}}_{t}\right]_{\mu\nu}$$

$$\Rightarrow \left[\tilde{\tilde{\mathbf{C}}}_{t+\Delta t}^{-1}\tilde{\mathbf{C}}_{t+\Delta t}\right]_{\mu\nu} \approx \begin{cases} 0 & \mu > \nu \\ \exp\left[\Delta t \left(\lambda_{\mu} - \lambda_{\nu}\right)\right] & \mu < \nu \\ \phi_{\mu} & \mu = \nu \end{cases} \qquad \lambda_{\mu} - \lambda_{\nu} > 0$$

If we follow the reversed dynamics

$$\tilde{\tilde{\mathbf{C}}}_{t+\Delta t}^{-1} \tilde{\mathbf{C}}_{t+\Delta t} \xrightarrow{\Delta t \to -\infty} \Phi \qquad (diagonal \ matrix)$$

$$\Rightarrow \tilde{\mathbf{C}}_{t+\Delta t} \xrightarrow{\Delta t \to -\infty} \tilde{\tilde{\mathbf{C}}}_{t+\Delta t} \Phi$$

All random initial conditions converge to the same ones, apart a prefactor

Thus this reversed dynamics converges to covariant vectors for almost any initial condition

Covariant Lyapunov Vectors properties

• They coincide with *stable* and *unstable* manifolds

• They are invariant under time reversal.

$$\vec{v}_{+}^{j} = \vec{v}_{-}^{N-j+1} \qquad \qquad \lambda^{+}_{j} = -\lambda^{-}_{N-j+1}$$

• They are covariant with dynamics and do yield correct growth factors (LEs):

$$\mathbf{M}_{t,\Delta t} \vec{v}_t^{\ j} = \gamma_{t,\Delta t}^{(j)} \vec{v}_{t+\Delta t}^{\ j} \qquad \left\langle \ln \left\| \mathbf{M}_{t,\Delta t} \vec{v}_t^{\ j} \right\| \right\rangle_t = \lambda$$

• They are norm independent and, for time reversible systems, coincide with the Oseledec splitting (*Ruelle 1979*)

• They can be computed for non time reversible systems too by following backward a stored forward trajectory

The stable algorithm for covariant Lyapunov Vectors

A Simple recipe

- Start from a random initial condition.
- Run a forward transient to obtain convergence of GS vectors
- Continue your phase space trajectory continuously storing the QR decomposition of tangent space.
- Run a final backward transient only storing the R matrices from QR
- Generate a random upper triangular matrix C
- Evolve C backward by inverting R matrices along the backward transient
- Convergence to CLV coefficients is ruled by difference between nearest LEs
- Once backward transient has been done and CLV coefficients are converged, continue to move backward along trajectories. CLV can be recovered as V=QC
- Some further tricks to ease memory storage in RAM are possible

Some applications

- Measure angles between CLV or linear combinations of CLV: numerical measures of hyperbolicity violations.
- Study the so called Lyapunov Hydrodynamic modes in Hamiltonian systems...
- Data assimilation algorithms ?
- Study the localization of modes associated to LE: hierarchical decomposition of ST chaos ?
- •Tangent space decomposition may reveal the effective degrees of freedom large disspative systems
- Analyze collective behavior in large dynamical system

FG, P. Poggi, A. Turchi, H. Chaté, R. Livi, and A. Politi, *PRL* 99, 130601 (2007).K.A. Takeuchi, FG, H. Chaté, *PRL* 103, 154103 (2009).

Collective behavior

$$x_i^{t+1} = (1-K)f(x_i^t) + \frac{K}{N}\sum_j f(x_j^t) + \eta_i^t$$

 $X^{t} = \frac{1}{N} \sum_{j} x_{j}^{t}$

• Collective, apparently low dimensional behavior of some global, mean field variable(s), possibly varying on time scales much larger that the ones of the individual elements. Individual oscillators stay unlocked.

Microscopic chaos

Collective behavior

(infinitely) many DOFs disordered, chaotic behavior

- fewer DOFs (possibly finite)
- various time-dependent behavior

Lyapunov analysis?

A model system: Globally coupled limit cycle oscillators

Landau Stuart oscillators Kuramoto & Nakagawa (1994, 1995)

$$\dot{W}_{j} = W_{j} - (1 + ic_{2}) |W_{j}|^{2} W_{j} + K(1 + ic_{1}) (\overline{W} - W_{j}) \qquad \overline{W} = \frac{1}{N} \sum_{j=1}^{N} W_{j}$$

individual oscillatorsO: collective dynamics

K = 0.1

A model system: Globally coupled limit cycle oscillators

Ginzburg Landau oscillators Kuramoto & Nakagawa (1994, 1995)

$$\dot{W}_{j} = W_{j} - (1 + ic_{2}) |W_{j}|^{2} W_{j} + K(1 + ic_{1}) (\overline{W} - W_{j}) \qquad \overline{W} = \frac{1}{N} \sum_{j=1}^{N} W_{j}$$

individual oscillatorsO: collective dynamics

K = 2.5

Intermediate couplung: nontrivial collective begavior

•Can one detect collective modes by infinitesimal Lyapunov analysis?

- Extensive LE, continuous part of the Lyapunov spectrum corresponding to microscopic dynamics
- Non extensive LE, discrete part of the Lyapunov spectrum corresponding to coherent modes
- Does it exist a well defined thermodynamic limit for Lyapunov spectra in globally coupled systems (i.e. *extensivity*)?

Conjecture: CLV are a tool to characterize collective modes

• Localized, extensive covariant Lyapunov vectors corresponding to microscopic dynamics

 $v_{\cdot}^{(j)}$

• Delocalized, nonextensive covariant Lyapunov vectors corresponding to collective modes

•Localization properties of vector *j* can be characterized by the inverse participation ratio

$$Y_2(j) = \left\langle \sum_i \left[v^{(j)} \right]_i^4 \right\rangle$$

• Localized: nonvanishing Y_2

• Delocalized: vanishing Y_2

 $Y_2(j) \approx 1/\ell + L^{-\gamma}$

Localization in spatially extended systems – Numerical results

a) CML of Tent maps $x_{t+1}^{i} = (1 - 2\varepsilon) f(x_{t}^{i}) + \varepsilon [f(x_{t+1}^{i+1}) + f(x_{t-1}^{i-1})]$ $f(x) = \begin{cases} ax & 0 \le x < 1/a \\ \frac{a}{1-a}(x-1) & 1 \ge x \ge 1/a \end{cases}$ b) Symplectic Maps $p_{t+1}^{i} = p_{t}^{i} + \mu [g(q_{t+1}^{i+1} - q_{t}^{i}) - g(q_{t}^{i} - q_{t-1}^{i-i})]$ $q_{t+1}^{i} = q_{t}^{i} + p_{t+1}^{i} \qquad g(x) = \frac{1}{2\pi} \sin(2\pi x)$

Continuous time Hamiltonian systems

$$\ddot{q}_{i} = F(q_{i+1} - q_{i}) - F(q_{i} - q_{i-1})$$

c) Rotators
$$F(x) = \sin(x)$$

d) FPU
$$F(x) = x + x^{3}$$

GSV

Zero-modes

others around zero

Most Positive & Negative Modes

most negative modes

most positive modes

On collective CLV structure

 λ = 0 collective

Degenerate: global change in phases and traslation along the trajectory Relation to Perron-Frobenius description

We can "directly" look at the thermodynamic limit through evolution of distribution function via PF equation.

Globally coupled logistic maps with bounded smooth noise (Karumaswamy dist.)

 $x_i^{t+1} = (1 - K)f(x_i^t) + K\langle f(x) \rangle + \xi_i^t$

0

 $f(x) = 1 - ax^2, a = 1.57$

$$\rho^{t+1}(x) = \int \rho_{\text{noise}}(F^t(y) - x)\rho^t(y)dy$$

with $F^t(y) = (1 - K)f(y) + K \int f(z)\rho^t(z)dz$

 $\rho_N(\xi) = 15\chi^2 (1-\chi^3)^4$ $\chi = (\xi/\sigma + 1)/2 \in [0,1]$

We compare Lyapunov modes from PF dynamics and delocalized Lyapunov modes from maps

Quantitative correspondence between PF mode & delocalized collective mode!

Conclusions

- Covariant Lyapunov Vectors are the right vectorial quantities to analyze spatiotemporal dynamics.
- They are covariant with dynamics, invariant under time reversal, norm independent and allow to compute LEs by ensamble averages
- For time reversible systems they coincide with Oseledec splitting
- CLVs yield drastically different behavior with respect to GSV (where orthonormalization induced "noise" distrupt dynamical properties) for what concerns spatially extended systems.
- They can be used to detect and analize collective modes in globally coupled systems, thus they can be used to analyze/discriminate different time and length scales in spatiotemporal chaotic systems.

FG, P. Poggi, A. Turchi, H. Chaté, R. Livi, and A. Politi, *PRL* **99**, 130601 (2007). K. A. Takeuchi, FG, H. Chaté, *PRL* **103**, 154103 (2009).

Yang, K. A. Takeuchi, FG, H. Chaté, and G. Radons, PRL 102 074102 (2009).