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•  Chaotic dynamics is characterized by exponential sensitivity to initial conditions:
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•  Tangent evolution of linearized perturbations is ruled by the Jacobian:
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Lyapunov Exponents
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•  The existence of a complete set of N  LEs is granted by the Oseledets multiplicative theorem:
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Lyapunov Exponents
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•  There exist a sequence of nested subspaces connected with these growth rates:
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•  LEs quantify the growth of volumes in tangent space

• Entropy production (Kolmogorov-Sinai entropy):
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• Attractor dimension in dissipative systems (Kaplan Yorke Formula)

• There exist a thermodynamic limit for
  Lyapunov spectra in spatially ext. systems:



Lyapunov Vectors ?

•  After exponents (i.e. eigenvalues), people got interested in vectors (i.e.
   eigenvectors ?) to quantify stable and unstable directions in tangent space.

•  Hierarchical decomposition of spatiotemporal chaos

•  Optimal forecast in nonlinear models (e.g. in geophysics)

•  Study of “hydrodynamical modes” in near-zero exponents and vectors
   (access to transport properties ?)

But… which vectors ?

•  i.e. bred vectors, singular vectors, Gram Schmidt vectors, covariant vectors…



Gram Schmidt vectors
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Gram Schmidt vectors are obtained by GS
orthogonalization (Benettin et al. 1980)
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•  It can be shown that any orthonormal set of vectors eventually converge to a well
   defined basis (Ershov and Potapov, 1998)

•  For time-invertible systems they coincide with the eigenvectors of the backward
   Oseledec matrix:
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• Dynamical properties are “washed away” by orthonormalization, which is norm
  dependent, while LEs are not (for a wide class of norms).

But…

• They are not invariant under time reversal, while LEs are (sign-wise):
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• They are not covariant with dynamics and do not yield correct growth factors:
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• They are orthogonal, while stable and unstable manifolds are generally not.



Covariant Lyapunov vectors  v 

• Oseledets (1968) & Ruelle (1979) – Oseledets splitting

  

! 

r 
v 

j
spans E r 

x 0

j( )
= " r 

x 0

j( )#" r 
x 0

N$ j +1( )

( )( ) ( )00     of   seigenspace xx
J rr

±± !U

  

! 

"r 
x 0

( j ) =U+

J( ) r 
x 
0( )#L#U+

N( ) r 
x 
0( )

" r 
x 0

(N$ j +1) =U$

1( ) r 
x 
0( )#L#U$

j( ) r 
x 
0( )

  

! 

dim "r 
x 0

( j )
 [ ] = N # j +1 dim " r 

x 0

( j )
 [ ] = j

• They are covariant with dynamics and do yield correct growth factors (LEs):

  

! 

M
r 
x t ,t + "t( )

r 
v t

j
= # j

r 
v t +"t

j

  

! 

ln M
r 
x t ,t + "t( )

r 
v t

j
= # j

  

! 

dim " r 
x 
0

N# j +1( )[ ] = j
1 2 4 4 3 4 4 

  

! 

dim " r 
x 
0

j( )[ ] = N # j +1

6 7 4 4 4 8 4 4 4 



• Politi et. al. (1998) – Covariant vectors satisfy a node theorem for periodic orbits

• Wolfe & Samelson (2007) – Intersection algorithm, more efficient for   j << N

Lack of a practical algorithm to compute them
No studies of ensemble properties in large systems

• Legras & Vautard; Trevisan & Pancotti (1996) – Covariant vectors in Lorenz 63

After Ruelle 

• Brown, Bryant & Abarbanel (1991) – Covariant vectors in time series data analysis



Computing covariant Lyapunov Vectors v
by forward-backward iterations
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 Upper triangular

Consider vectors which are linear combinations 
of the first j Gram-Schmidt vectors g
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1. R evolves the coefficients C according to tangent dynamics

(Expand CLV on GS basis)

Covariant evolution means:

one gets the
evolution rule
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Diag matrix w. local growth factors



2.  Moving backwards insures convergence to the “right” covariant vectors
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If we follow the reversed dynamics
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All random initial conditions converge to the same ones, apart a prefactor

Thus this reversed dynamics converges to covariant vectors  for almost any
initial condition



• They are invariant under time reversal.
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• They are covariant with dynamics and do yield correct growth factors (LEs):

  

! 

M t,"t

r 
v t

j
= # t ,"t

j( ) r 
v t +"t

j

  

! 

ln M t,"t

r 
v t

j

t

= # j

• They coincide with stable and unstable manifolds

• They are norm independent and, for time reversible systems, coincide with the
   Oseledec splitting (Ruelle 1979)

• They can be computed for non time reversible systems too by following backward
  a stored forward trajectory

Covariant Lyapunov Vectors properties



The stable algorithm for covariant Lyapunov Vectors
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Matrix R evolves the coefficients C 

according to tangent dynamics
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• Start from a random initial condition.

• Run a forward transient to obtain convergence of GS vectors

• Continue your phase space trajectory continuously storing the QR decomposition
of tangent space.

• Run a final backward transient only storing the R matrices from QR

• Generate a random upper triangular matrix C

• Evolve C backward by inverting R matrices along the backward transient

• Convergence to CLV coefficients is ruled by difference between nearest LEs

• Once backward transient has been done and CLV coefficients are converged,
continue to move backward along trajectories. CLV can be recovered as V=QC

• Some further tricks to ease memory storage in RAM are possible

A Simple recipe



• Measure angles between CLV or linear combinations of CLV:
numerical measures of hyperbolicity violations.

• Study the so called Lyapunov Hydrodynamic modes in Hamiltonian systems…

• Data assimilation algorithms ?

• Study the localization of modes associated to LE: hierarchical decomposition
   of ST chaos ?

•Tangent space decomposition may reveal the effective degrees of freedom large
    disspative systems

• Analyze collective behavior in large dynamical system

FG, P. Poggi, A. Turchi, H. Chaté, R. Livi, and A. Politi, PRL 99, 130601 (2007).

K.A. Takeuchi, FG, H. Chaté, PRL 103, 154103 (2009).

Some applications



Collective behavior

! 

xi
t+1 = 1"K( ) f xi

t( ) +
K

N
f x j

t( )
j

#
j

+$i

t

•  Collective, apparently low dimensional behavior of some global, mean field
   variable(s), possibly varying on time scales much larger that the ones of the
   individual elements. Individual oscillators stay unlocked.

Lyapunov analysis?

• (infinitely) many DOFs
• disordered, chaotic behavior

Microscopic chaos

• fewer DOFs  (possibly finite)
• various time-dependent behavior
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:  individual oscillators
: collective dynamics

A model system: Globally coupled limit cycle oscillators
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Landau Stuart oscillators Kuramoto & Nakagawa (1994, 1995)



:  individual oscillators
: collective dynamics

A model system: Globally coupled limit cycle oscillators

( ) !
=

="+++"=
N

j

jjjjjj W
N

WWWicKWWicWW
1

1

2

2

1
)1()1(&

Ginzburg Landau oscillators Kuramoto & Nakagawa (1994, 1995)



individual oscillators: chaotic
collective dynamics: weakly chaotic

D e n s i t y  p l o t

Intermediate couplung: nontrivial collective begavior



•Can one detect collective modes by infinitesimal Lyapunov analysis?

•  Extensive LE, continuous part of the Lyapunov spectrum
  corresponding to microscopic dynamics

•  Non extensive LE, discrete part of the Lyapunov spectrum
  corresponding to coherent modes

• Does it exist a well defined thermodynamic limit for Lyapunov spectra in
  globally coupled  systems (i.e. extensivity )?



Conjecture: CLV are a tool to characterize collective modes
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•  Localized, extensive covariant Lyapunov vectors
  corresponding to microscopic dynamics

• Delocalized, nonextensive covariant Lyapunov vectors
  corresponding to collective modes
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Localization in spatially extended systems – Numerical results

CLV
GSV
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Parametric plot of      vs



Zero-modesZero-modes
two numerical zeros

others around zero

collective!

microscopic



Most Positive & Negative ModesMost Positive & Negative Modes

most positive modes

most negative modes

1 positive
collective
mode!



adjust peak widthmoves peaks entirely

λ > 0 collective λ < 0 collective

Degenerate: global change in phases
and traslation along the trajectory

λ = 0 collective

On collective CLV structureOn collective CLV structure



Relation to Relation to Perron-Frobenius Perron-Frobenius descriptiondescription

We can “directly” look at  the thermodynamic limit through
evolution of distribution function via PF equation.

w i t h

We compare Lyapunov modes from PF dynamics
and delocalized Lyapunov modes from maps

Globally coupled logistic maps with bounded smooth noise  (Karumaswamy dist.)
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PF
maps (N=107)
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Conclusions

• Covariant Lyapunov Vectors are the right vectorial quantities to analyze
  spatiotemporal dynamics.

• They are covariant with dynamics, invariant under time reversal, norm
   independent and allow to compute LEs by ensamble averages

• For time reversible systems they coincide with Oseledec splitting

• CLVs yield drastically different behavior with respect to GSV (where
  orthonormalization induced “noise” distrupt dynamical properties) for what
  concerns spatially extended systems.

• They can be used to detect and analize collective modes in globally coupled
  systems, thus they can be used to analyze/discriminate different time and length
  scales in spatiotemporal chaotic systems.
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