Characterizing nonlinear dynamics with covariant Lyapunov vectors

Francesco Ginelli

Institut des Systèmes Complexes Paris lle de France \& CEA/Saclay

Joint work with:
A Politi, R. Livi, H. Chaté, K.A. Takeuchi, P. Poggi, A. Turchi

Lyapunov Exponents

- Chaotic dynamics is characterized by exponential sensitivity to initial conditions:

$$
\begin{aligned}
& \vec{x}_{t+1}=\overrightarrow{\mathbf{F}}\left(\vec{x}_{t}\right) \\
& \frac{d}{d t} \vec{x}_{t}=\overrightarrow{\mathbf{F}}\left(\vec{x}_{t}\right)
\end{aligned}
$$

$$
\left\|\delta \vec{x}_{t}\right\| \approx\left\|\delta \vec{x}_{0}\right\| \cdot \exp \left[\lambda_{1} t\right] \quad t \gg 1
$$

- Tangent evolution of linearized perturbations is ruled by the Jacobian:

$$
\begin{array}{ll}
\mathbf{J}_{t}: \quad\left[\mathbf{J}_{t}\right]_{\mu v}=\frac{\partial F_{\mu}\left(\vec{x}_{t}\right)}{\partial x_{v}} & \\
\delta \vec{x}_{t}=\mathbf{M}\left(\vec{x}_{0}, t\right) \delta \vec{x}_{0} & \mathbf{M}\left(\vec{x}_{0}, t\right)=\left(\mathbf{J}_{t-1} \mathbf{J}_{t-2} \cdots \mathbf{J}_{t_{0}+1} \mathbf{J}_{t_{0}}\right) \\
& \frac{d}{d t} \mathbf{M}\left(\vec{x}_{0}, t\right)=\mathbf{J}_{t} \mathbf{M}\left(\vec{x}_{0}, t\right) \quad \mathbf{M}\left(\vec{x}_{0}, 0\right)=\mathbf{I}
\end{array}
$$

Lyapunov Exponents

- The existence of a complete set of N LEs is granted by the Oseledets multiplicative theorem:

$$
\Lambda_{+}\left(\vec{x}_{0}\right)=\lim _{t \rightarrow \infty}\left[\mathbf{M}^{\mathrm{T}}\left(\vec{x}_{0}, t\right) \mathbf{M}\left(\vec{x}_{0}, t\right)\right]^{1 /(2 t)}
$$

$$
\Lambda_{+}\left(\vec{x}_{0}\right) \vec{e}_{+}^{j}\left(\vec{x}_{0}\right)=\gamma_{j} \vec{e}_{+}^{j}\left(\vec{x}_{0}\right)
$$

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{N} \quad \lambda_{j}=\ln \gamma_{j}
$$

- There exist a sequence of nested subspaces connected with these growth rates:

$$
\begin{array}{r}
\mathbf{R}^{N}=\Gamma_{\vec{x}_{0}}^{(1)} \supset \Gamma_{\vec{x}_{0}}^{(2)} \supset \cdots \supset \Gamma_{\vec{x}_{0}}{ }^{(N)} \quad \lambda_{j} \quad \text { exp. growth rate of } \vec{u} \in \Gamma_{\vec{x}_{0}}{ }^{(j)} \backslash \Gamma_{\vec{x}_{0}}^{(j+1)} \\
\operatorname{dim}\left(\Gamma_{\vec{x}_{0}}{ }^{(j)}\right)=N-j+1
\end{array}
$$

- LEs quantify the growth of volumes in tangent space
- Entropy production (Kolmogorov-Sinai entropy):

$$
H_{K S}=\sum_{\lambda_{i}>0} \lambda_{i}
$$

- Attractor dimension in dissipative systems (Kaplan Yorke Formula)

$$
D_{K Y}=k+\frac{\sum_{i=1}^{k} \lambda_{i}}{\left|\lambda_{k+1}\right|}
$$

- There exist a thermodynamic limit for Lyapunov spectra in spatially ext. systems:

Lyapunov Vectors ?

- After exponents (i.e. eigenvalues), people got interested in vectors (i.e. eigenvectors ?) to quantify stable and unstable directions in tangent space.
- Hierarchical decomposition of spatiotemporal chaos
- Optimal forecast in nonlinear models (e.g. in geophysics)
- Study of "hydrodynamical modes" in near-zero exponents and vectors (access to transport properties ?)

But... which vectors ?

- i.e. bred vectors, singular vectors, Gram Schmidt vectors, covariant vectors...

Gram Schmidt vectors

Gram Schmidt vectors are obtained by GS orthogonalization (Benettin et al. 1980)

$$
\tilde{\mathbf{G}}_{t}=\left(\tilde{g}_{t}^{1}|\cdots| \tilde{g}_{t}^{N}\right)
$$

$$
\mathbf{Q}_{t}=\left(g_{t}{ }^{1}|\cdots| g_{t}^{N}\right)
$$

Upper triangular
$\tilde{\mathbf{G}}_{t+\Delta t}=\mathbf{Q}_{t+\Delta t} \mathbf{R}_{t, \Delta t}$

- It can be shown that any orthonormal set of vectors eventually converge to a well defined basis (Ershov and Potapov, 1998)
- For time-invertible systems they coincide with the eigenvectors of the backward Oseledec matrix:

$$
\vec{g}^{j} \rightarrow \vec{e}_{-}^{N-j+1}
$$

$$
\Lambda_{-}\left(x_{0}\right)=\lim _{t \rightarrow-\infty}\left[\mathbf{M}^{-1}\left(x_{0}, t\right)^{T} \mathbf{M}^{-1}\left(x_{0}, t\right)\right]^{1 / 2 t}
$$

But...

- They are orthogonal, while stable and unstable manifolds are generally not.
- Dynamical properties are "washed away" by orthonormalization, which is norm dependent, while LEs are not (for a wide class of norms).
- They are not invariant under time reversal, while LEs are (sign-wise):

$$
\vec{g}_{+}^{j} \neq \vec{g}_{-}^{N-j+1} \quad \lambda_{j}^{+}=-\lambda^{-}{ }_{N-j+1}
$$

- They are not covariant with dynamics and do not yield correct growth factors:

$$
\begin{array}{ll}
\mathbf{M}\left(\vec{x}_{t}, t+\Delta t\right) \vec{g}_{t}^{j} \neq \gamma_{t, \Delta t}^{(j)} \vec{g}_{t+\Delta t}^{j} & \left\langle\ln \left\|\mathbf{M}\left(\vec{x}_{t}, t+\Delta t\right) \vec{g}_{t}^{j}\right\|\right\rangle \neq \lambda_{j} \\
\vec{g}_{t}^{j} \equiv \vec{g}^{j}\left(\vec{x}_{t}\right) &
\end{array}
$$

Covariant Lyapunov vectors v

- Oseledets (1968) \& Ruelle (1979) - Oseledets splitting

$$
\vec{v}^{j} \quad \text { spans } \quad \mathbf{E}_{\vec{x}_{0}}^{(j)}=\overbrace{\operatorname{dim}\left[\Gamma_{x_{0}}^{(j)}\right]=N-j+1}^{\sum_{\vec{x}_{0}}^{(j)} \cap \bar{\Gamma}_{\bar{x}_{0}}^{(N-j+1)}} \underbrace{\operatorname{dim}\left[\bar{\Gamma}_{x_{0}}^{(N-j+1)}\right]=j}
$$

$$
\begin{aligned}
& \Gamma_{\bar{x}_{0}}^{(j)}=\mathbf{U}_{+}^{(J)}\left(\vec{x}_{0}\right) \oplus \cdots \oplus \mathbf{U}_{+}^{(N)}\left(\vec{x}_{0}\right) \mathbf{U}_{ \pm}^{(J)}\left(\vec{x}_{0}\right) \quad \text { eige } \\
& \bar{\Gamma}_{\left.\bar{x}_{0}-j+1\right)}^{(N-)}=\mathbf{U}_{-}^{(1)}\left(\vec{x}_{0}\right) \oplus \cdots \oplus \mathbf{U}_{-}^{(j)}\left(\vec{x}_{0}\right) \\
& \operatorname{dim}\left[\Gamma_{\bar{x}_{0}}^{(j)}\right]=N-j+1 \quad \operatorname{dim}\left[\bar{\Gamma}_{x_{0}}^{(j)}\right]=j
\end{aligned}
$$

- They are covariant with dynamics and do yield correct growth factors (LEs):

$$
\mathbf{M}\left(\vec{x}_{t}, t+\Delta t\right) \vec{v}_{t}^{j}=\gamma_{j} \vec{v}_{t+\Delta t}^{j} \quad\left\langle\ln \left\|\mathbf{M}\left(\vec{x}_{t}, t+\Delta t\right) \vec{v}_{t}^{j}\right\|\right\rangle=\lambda_{j}
$$

After Ruelle

- Brown, Bryant \& Abarbanel (1991) - Covariant vectors in time series data analysis
- Legras \& Vautard; Trevisan \& Pancotti (1996) - Covariant vectors in Lorenz 63
- Politi et. al. (1998) - Covariant vectors satisfy a node theorem for periodic orbits
- Wolfe \& Samelson (2007) - Intersection algorithm, more efficient for $\boldsymbol{j} \ll \boldsymbol{N}$

Lack of a practical algorithm to compute them
No studies of ensemble properties in large systems

Computing covariant Lyapunov Vectors v by forward-backward iterations

Upper triangular

$$
\left[\mathbf{C}_{t}\right]_{i j}=c_{t}^{i j}=\left(\vec{g}_{t}^{i} \cdot \vec{v}_{t}^{j}\right)
$$

Consider vectors which are linear combinations of the first j Gram-Schmidt vectors g

$$
\vec{v}_{t}^{j}=\sum_{i=1}^{j} c_{t}^{i j} \vec{g}_{t}^{i} \quad \sum_{i=1}^{j}\left[c_{t}^{i j}\right]^{2}=1
$$

1. R evolves the coefficients C according to tangent dynamics

Covariant evolution means:
(Expand CLV on GS basis)
(use QR decomposition)

$$
\begin{aligned}
& \mathbf{V}_{t+\Delta t} t_{t, \Delta t}^{\text {Diag matrix w. local growth factors }}=\mathbf{M}_{t, \Delta t} \mathbf{V}_{t} \quad\left(\mathbf{M}_{t, \Delta t}=\mathbf{M}\left(\vec{x}_{t}, t+\Delta t\right)\right) \\
& \left(v_{t}^{1}\left|v_{t}^{2}\right| \cdots \mid v_{t}^{N}\right) \equiv \mathbf{V}_{t}=\mathbf{Q}_{t} \mathbf{C}_{t} \\
& \mathbf{Q}_{t+\Delta t} \mathbf{C}_{t+\Delta t} \Delta_{t, \Delta t}=\mathbf{M}_{t, \Delta t} \mathbf{Q}_{t} \mathbf{C}_{t} \\
& \mathbf{M}_{t, \Delta t} \mathbf{Q}_{t}=\tilde{\mathbf{G}}_{t+\Delta t}=\mathbf{Q}_{t+\Delta t} \mathbf{R}_{t, \Delta t} \\
& \mathbf{Q}_{t+\Delta \Delta t} \mathbf{C}_{t+\Delta t} \Delta_{t, \Delta t}=\mathbf{Q}_{t+\Delta t} \mathbf{R}_{t, \Delta \Delta} \mathbf{C}_{t} \\
& \mathbf{C}_{t+\Delta t} \Delta_{t, \Delta t}=\mathbf{R}_{t, \Delta t} \mathbf{C}_{t}
\end{aligned}
$$

one gets the
evolution rule
2. Moving backwards insures convergence to the "right" covariant vectors

$$
\mathbf{R}_{t, \Delta t}{ }^{-1} \tilde{\mathbf{C}}_{t+\Delta t} \tilde{\Delta}_{t, \Delta t} \rightarrow \mathbf{C}_{t}
$$

(consider two different random initial conditions)

$$
\tilde{\mathbf{C}}_{t+\Delta t} \tilde{\Delta}_{t, \Delta t}=\mathbf{R}_{t, \Delta \Delta} \tilde{\mathbf{C}}_{t} \quad \tilde{\tilde{\mathbf{C}}}_{t+\Delta \Delta} \tilde{\tilde{\Delta}}_{t, \Delta t}=\mathbf{R}_{t, \Delta t} \tilde{\tilde{t}}_{t}
$$

A. If C are upper triangular with non-zero diagonal, one can verify that

$$
\tilde{\tilde{\Delta}}_{t, \Delta t}, \tilde{\Delta}_{t, \Delta t} \xrightarrow{\Delta t \rightarrow \pm \infty} \operatorname{diag}\left(e^{ \pm \Delta t \lambda_{1}}, e^{ \pm \Delta t \lambda_{2}}, \cdots, e^{ \pm \Delta t \lambda_{N}}\right)
$$

B. By simple manipulations

$$
\begin{aligned}
& \mathbf{R}_{t, \Delta t}=\tilde{\mathbf{C}}_{t+\Delta t} \tilde{\Delta}_{t, \Delta t} \tilde{\mathbf{C}}_{t}^{-1}=\tilde{\tilde{\mathbf{C}}}_{t+\Delta t} \tilde{\tilde{\Delta}}_{t, \Delta t} \tilde{\mathbf{C}}_{t}^{-1} \\
& \Rightarrow\left[\tilde{\tilde{\mathbf{C}}}_{t+\Delta t}^{-1} \tilde{\mathbf{C}}_{t+\Delta t}\right]=\tilde{\tilde{\Delta}}_{t, \Delta t}\left[\tilde{\tilde{\mathbf{C}}}_{t}^{-1} \tilde{\mathbf{C}}_{t}\right] \tilde{\Delta}_{t, \Delta t}^{-1}
\end{aligned}
$$

(by matrix components)

$$
\begin{aligned}
& \Rightarrow\left[\tilde{\tilde{\mathbf{C}}}_{t+\Delta t}^{-1} \tilde{\mathbf{C}}_{t+\Delta t}\right]_{\mu v} \xrightarrow{\Delta t \rightarrow \pm \infty} \exp \left[\Delta t\left(\lambda_{\mu}-\lambda_{v}\right)\right]\left[\tilde{\tilde{\mathbf{C}}}_{t}^{-1} \tilde{\mathbf{C}}_{t}\right]_{\mu v} \\
& \quad \Rightarrow\left[\tilde{\tilde{\mathbf{C}}}_{t+\Delta t}^{-1} \tilde{\mathbf{C}}_{t+\Delta t}\right]{ }_{\mu v} \approx\left\{\begin{aligned}
& 0 \mu>v \\
& \exp \left[\Delta t\left(\lambda_{\mu}-\lambda_{v}\right)\right] \begin{array}{l}
\mu<v \\
\phi_{\mu}
\end{array} \\
& \mu=v
\end{aligned}\right.
\end{aligned}
$$

If we follow the reversed dynamics

$$
\begin{aligned}
& \tilde{\tilde{\mathbf{C}}}_{t+\Delta t}^{-1} \tilde{\mathbf{C}}_{t+\Delta t} \xrightarrow{\Delta t \rightarrow-\infty} \Phi \quad \text { (diagonal matrix) } \\
& \Rightarrow \tilde{\mathbf{C}}_{t+\Delta t} \xrightarrow{\Delta t \rightarrow-\infty} \tilde{\tilde{\mathbf{C}}}_{t+\Delta t} \Phi
\end{aligned}
$$

All random initial conditions converge to the same ones, apart a prefactor
Thus this reversed dynamics converges to covariant vectors for almost any initial condition

Covariant Lyapunov Vectors properties

- They coincide with stable and unstable manifolds
- They are invariant under time reversal.

$$
\vec{v}_{+}^{j}=\vec{v}_{-}^{N-j+1} \quad \lambda_{j}^{+}=-\lambda^{-}{ }_{N-j+1}
$$

- They are covariant with dynamics and do yield correct growth factors (LEs):

$$
\mathbf{M}_{t, \Delta t} \vec{v}_{t}^{j}=\gamma_{t, \Delta t}^{(j)} \vec{v}_{t+\Delta t}^{j} \quad\left\langle\ln \left\|\mathbf{M}_{t, \Delta t} \vec{v}_{t}^{j}\right\|\right\rangle_{t}=\lambda_{j}
$$

- They are norm independent and, for time reversible systems, coincide with the Oseledec splitting (Ruelle 1979)
- They can be computed for non time reversible systems too by following backward a stored forward trajectory

The stable algorithm for covariant Lyapunov Vectors

$$
\left\{c^{i j}\right\}_{t+\Delta t}
$$

Upper triangular

$$
\left[\mathbf{C}_{t}\right]_{i j}=c_{t}^{i j}=\left(\vec{g}_{t}^{i} \cdot \vec{v}_{t}^{j}\right)
$$

Matrix R evolves the coefficients C according to tangent dynamics

$$
\left(\mathbf{R}_{t, \Delta t}\right)^{-1} \mathbf{C}_{t+\Delta t} \Delta_{t, \Delta t}=\mathbf{C}_{t}
$$

$$
\vec{v}_{t}^{j}=\sum_{i=1}^{j} c_{t}^{i j} \vec{g}_{t}^{i}
$$

This linearized evoluytion is convergent in the time reversed (linearized) dynamics

A Simple recipe

- Start from a random initial condition.
- Run a forward transient to obtain convergence of GS vectors
- Continue your phase space trajectory continuously storing the QR decomposition of tangent space.
- Run a final backward transient only storing the R matrices from QR
- Generate a random upper triangular matrix C
- Evolve C backward by inverting R matrices along the backward transient
- Convergence to CLV coefficients is ruled by difference between nearest LEs
- Once backward transient has been done and CLV coefficients are converged, continue to move backward along trajectories. CLV can be recovered as V=QC
- Some further tricks to ease memory storage in RAM are possible

Some applications

- Measure angles between CLV or linear combinations of CLV: numerical measures of hyperbolicity violations.
- Study the so called Lyapunov Hydrodynamic modes in Hamiltonian systems...
- Data assimilation algorithms ?
- Study the localization of modes associated to LE: hierarchical decomposition of ST chaos?
-Tangent space decomposition may reveal the effective degrees of freedom large disspative systems
- Analyze collective behavior in large dynamical system

```
FG, P. Poggi, A. Turchi, H. Chaté, R. Livi, and A. Politi, PRL 99, 130601 (2007).
K.A. Takeuchi, FG, H. Chaté, PRL 103, 154103 (2009).
```


Collective behavior

$$
x_{i}^{t+1}=(1-K) f\left(x_{i}^{t}\right)+\frac{K}{N} \sum_{j} f\left(x_{j}^{t}\right)_{j}+\eta_{i}^{t} \quad X^{t}=\frac{1}{N} \sum_{j} x_{j}^{t}
$$

- Collective, apparently low dimensional behavior of some global, mean field variable(s), possibly varying on time scales much larger that the ones of the individual elements. Individual oscillators stay unlocked.

Microscopic chaos

- (infinitely) many DOFs
- disordered, chaotic behavior

Collective behavior

- fewer DOFs (possibly finite)
- various time-dependent behavior

Lyapunov analysis?

A model system: Globally coupled limit cycle oscillators

Landau Stuart oscillators Kuramoto \& Nakagawa $(1994,1995)$

$$
\dot{W}_{j}=W_{j}-\left(1+i c_{2}\right)\left|W_{j}\right|^{2} W_{j}+K\left(1+i c_{1}\right)\left(\bar{W}-W_{j}\right) \quad \bar{W}=\frac{1}{N} \sum_{j=1}^{N} W_{j}
$$

- individual oscillators

O: collective dynamics

$$
K=0.1
$$

A model system: Globally coupled limit cycle oscillators

Ginzburg Landau oscillators Kuramoto \& Nakagawa $(1994,1995)$

$$
\dot{W}_{j}=W_{j}-\left(1+i c_{2}\right)\left|W_{j}\right|^{2} W_{j}+K\left(1+i c_{1}\right)\left(\bar{W}-W_{j}\right) \quad \bar{W}=\frac{1}{N} \sum_{j=1}^{N} W_{j}
$$

- individual oscillators

O: collective dynamics

Intermediate couplung: nontrivial collective begavior

$K=0.470$

individual oscillators: collective dynamics:

$$
N=10^{7}
$$

-Can one detect collective modes by infinitesimal Lyapunov analysis?

- Extensive LE, continuous part of the Lyapunov spectrum corresponding to microscopic dynamics
- Non extensive LE, discrete part of the Lyapunov spectrum corresponding to coherent modes
- Does it exist a well defined thermodynamic limit for Lyapunov spectra in globally coupled systems (i.e. extensivity)?

Conjecture: CLV are a tool to characterize collective modes

- Localized, extensive covariant Lyapunov vectors corresponding to microscopic dynamics

- Delocalized, nonextensive covariant Lyapunov vectors corresponding to collective modes
-Localization properties of vector j can be characterized by the inverse participation ratio

$$
Y_{2}(j)=\left\langle\sum_{i}\left[v^{(j)}\right]_{i}^{4}\right\rangle
$$

- Localized: nonvanishing Y_{2}

$$
Y_{2}(j) \approx 1 / \ell+L^{-\gamma}
$$

- Delocalized: vanishing Y_{2}

$$
Y_{2}(j) \approx 1 / L
$$

Localization in spatially extended systems - Numerical results

CLV

$h=i / L=0.2$
a) CML of Tent maps

$$
x_{t+1}^{i}=(1-2 \varepsilon) f\left(x_{t}^{i}\right)+\varepsilon\left[f\left(x_{t}^{i+1}\right)+f\left(x_{t}^{i-1}\right)\right]
$$

$$
f(x)= \begin{cases}a x & 0 \leq x<1 / a \\ \frac{a}{1-a}(x-1) & 1 \geq x \geq 1 / a\end{cases}
$$

b) Symplectic Maps

$$
\begin{aligned}
& p_{t+1}^{i}=p_{t}^{i}+\mu\left[g\left(q^{i+1}{ }_{t}-q_{t}^{i}\right)-g\left(q_{t}^{i}-q^{i-i}{ }_{t}\right)\right] \\
& q^{i}+1=q_{t}^{i}+p_{t+1}^{i} \quad g(x)=\frac{1}{2 \pi} \sin (2 \pi x)
\end{aligned}
$$

Continuous time Hamiltonian systems

$$
\ddot{q}_{i}=F\left(q_{i+1}-q_{i}\right)-F\left(q_{i}-q_{i-1}\right)
$$

c) Rotators

$$
F(x)=\sin (x)
$$

\Rightarrow Parametric plot of Y_{2} vs λ

Zero-modes

two numerical zeros

others around zero

Most Positive \& Negative Modes

most negative modes

most positive modes

On collective CLV structure

$\lambda<0$ collective

adjust peak width

$\lambda=0$ collective
Degenerate: global change in phases and traslation along the trajectory

Relation to Perron-Frobenius description

We can "directly" look at the thermodynamic limit through evolution of distribution function via PF equation.

Globally coupled logistic maps with bounded smooth noise (Karumaswamy dist.)

$$
x_{i}^{t+1}=(1-K) f\left(x_{i}^{t}\right)+K\langle f(x)\rangle+\xi_{i}^{t} \quad f(x)=1-a x^{2}, a=1.57
$$

$$
\begin{aligned}
& \rho^{t+1}(x)=\int \rho_{\text {noise }}\left(F^{t}(y)-x\right) \rho^{t}(y) \mathrm{d} y \\
& F^{t}(y)=(1-K) f(y)+K \int f(z) \rho^{t}(z) \mathrm{d} z
\end{aligned}
$$

$$
\begin{aligned}
& \rho_{N}(\xi)=15 \chi^{2}\left(1-\chi^{3}\right)^{4} \\
& \chi=(\xi / \sigma+1) / 2 \in[0,1]
\end{aligned}
$$

We compare Lyapunov modes from PF dynamics and delocalized Lyapunov modes from maps
profile of $1^{\text {st }}$ vector

_-PF

- maps $\left(\mathrm{N}=10^{7}\right)$

$$
K=0.28 \quad \sigma=0.1
$$

Quantitative correspondence between
PF mode \& delocalized collective mode!

Conclusions

- Covariant Lyapunov Vectors are the right vectorial quantities to analyze spatiotemporal dynamics.
- They are covariant with dynamics, invariant under time reversal, norm independent and allow to compute LEs by ensamble averages
- For time reversible systems they coincide with Oseledec splitting
- CLVs yield drastically different behavior with respect to GSV (where orthonormalization induced "noise" distrupt dynamical properties) for what concerns spatially extended systems.
- They can be used to detect and analize collective modes in globally coupled systems, thus they can be used to analyze/discriminate different time and length scales in spatiotemporal chaotic systems.

[^0]
[^0]: FG, P. Poggi, A. Turchi, H. Chaté, R. Livi, and A. Politi, PRL 99, 130601 (2007).
 K. A. Takeuchi, FG, H. Chaté, PRL 103, 154103 (2009).

 Yang, K. A. Takeuchi, FG, H. Chaté, and G. Radons, PRL 102074102 (2009).

