

Spatiotemporal MVL Analysis of EPS: Application to DEMETER multi-model Seasonal Predictions

ECODYC10. Max Plack Institute Physics Complex Systems. Dresden, 25-29/1/2010

Santander Meteorology Group A multidisciplinary approach for weather & climate

From theory to operations

- What we learned from our "theoretical" colleagues
 - Spatiotemporal growth of errors
- What we jointly developed for practical applications:
 - MVL diagram
- Application to DEMETER Hindcast
- Going back to theory:
 - Extension to two-scale systems (Lorenz96)

The MVL diagram provides a "fingerprint" of the system dynamics

Moreover, the initial transient is related to the initial perturbations.

- A: Random and spatially uncorrelated
- C: Assimilated perturbations (e.g. bred vec.)

B: Spatially correlated and non-assimilated (e.g. lagged)

thanks to Francisco Doblas-Reyes

Ocean-atmosphere global circulation models running ensemble initial condition perturbations (9 members) for seasonal forecasts.

Multi-model ensemble addresses the problem of model error.

Santander Meteorology Group A multidisciplinary approach for weather & climate

DEMETER **GCMs**

	CERFACS	ECMWF	INGV	LODYC	Météo- France	Met Office	MPI
atmosphere component	ARPEGE	IFS	ECHAM-4	IFS	ARPEGE	HadAM3	ECHAM-5
resolution	T63 31 Levels	T95 40 Levels	T42 19 Levels	T95 40 Levels	T63 31 Levels	2.5° x 3.75° 19 Levels	T42 19 Levels
atmosphere initial conditions	ERA-40	ERA-40	coupled AMIP-type experiment	ERA-40	ERA-40	ERA-40	coupled run relaxed to observed SSTs
reference	Déqué 2001	Gregory et al. 2000	Roeckner 1996	Gregory et al. 2000	Déqué 2001	Pope et al. 2000	Roeckner 1996
ocean component	OPA 8.2	HOPE-E	OPA 8.1	OPA 8.2	OPA 8.0	GloSea OGCM, based on HadCM3	MPI-OM1
resolution	2.0° x 2.0° 31 Levels	1.4º x 0.3º- 1.4º 29 Levels	2.0º x 0.5º- 1.5º 31 Levels	2.0° x 2.0° 31 Levels	182 GP x 152 GP 31 Levels	1.25° x 0.3°- 1.25° 40 Levels	2.5° x 0.5°- 2.5° 23 Levels
ocean initial conditions	ocean analyses forced by ERA-40	coupled run relaxed to observed SSTs					
reference	Delecluse and Madec 1999	Wolff et al. 1997	Madec et al. 1998	Delecluse and Madec 1999	Madec et al. 1997	Gordon et al. 2000	Marsland et al. 2002
ensemble generation	windstress and SST perturbations	9 different atmospheric conditions from the coupled initialization run (lagged method)					

GCMs building blocks

Label	Atm	Ocn	Simulation center		osphere models	Resolution
				A	ARPEGE	T63L31
onrm	Δ	0"	MátáoEranco	B	IFS	T 95L40
CIIIII	A	a	Meteorrance	C	HadAM3	2.5×3.75L19
crfc	A	a	CERFACS	D	ECHAM5	T42L19
		<u> </u>	Lopus	D'	ECHAM4	T42L19
lody	В	а	LODYC	Oce	an models	Resolution
senr	D'	2'	INGV			Resolution
50111		L. L.	III (G)	a	OPA8.2	2.0×2.0L31
scwf	B	b	ECMWF	a'	OPA8.1	2.0×0.5-1.5L31
	D	4	Mor Dian's Institute	a"	OPA8.0	182×152L31
smpi	D	a	Max Plank Institute	b	HOPE-E	1.4×0.3-1.4L29
ukmo	C	C	UK-MetOffice	c	GloSea	1.25×0.3-1.25L40
uKIIIO	C	C		d	MPIOM1	2.5×0.5-2.5L23

Santander Meteorology Group

A multidisciplinary approach for weather & climate

Different models share common building blocks (atmospheric and/or oceanic components), so they cannot be considered as equiprobable representations of the model error. Thus, we need some diagnostic tool to find similarities among models dynamically.

Phil. Trans. R. Soc. A (2007) **365**, 2103–2116 doi:10.1098/rsta.2007.2070 Published online 14 June 2007

Probabilistic climate change predictions applying Bayesian model averaging

By Seung-Ki Min^{*}, Daniel Simonis and Andreas Hense Meteorologisches Institut, Universität Bonn, 53121 Bonn, Germany

GEOPHYSICAL RESEARCH LETTERS, VOL. 30, NO. 12, 1629, doi:10.1029/2003GL017130, 2003

Probability of regional climate change based on the Reliability Ensemble Averaging (REA) method

F. Giorgi Abdus Salam ICTP, Trieste, Italy L. O. Mearns NCAR, Boulder, USA

Project acronym: ENSEMBLES

Project title: ENSEMBLE-based Predictions of Climate Changes and their Impacts

Deliverable D2B.6: Refinement of the Reliability Ensemble Averaging (REA) Framework Actual submission date: February 2006

Model weighting

All these methods weight models according to performance.

Thus, if a "good" model is included several times in the ensemble, then the results will be biased towards this particular model.

The fast variables play a role in the dynamics of slow variables even after saturation. They cannot be substituted by an "effective" noise.

20

The MVL diagram is a powerfull diagnosis and characterization tool.

We (operational meteorology) can benefit from the advances in spatiotemporal nonlinear physics.

ALSO THE OTHER WAY AROUND.

More Info

http://www.meteo.unican.es

S. Herrera, J. Fernández, M.A. Rodríguez and J.M. Gutiérrez (2010) Spatio-temporal Error Growth in the Multi-Scale Lorenz96 Model <u>Nonlinear Processes in Geophysics</u>, submitted.

J. Fernández, C. Primo, A. S. Cofiño, J.M. Gutiérrez, M.A. Rodríguez (2009) MVL Spatiotemporal analysis for model comparison. Application to the DEMETER Multi-model Ensemble <u>*Climate Dynamics*</u>, 33, 233-243. DOI: 10.1007/s00382-008-0456-9

J.M. Gutiérrez, C. Primo, M.A. Rodríguez and J. Fernández (2008) Spatiotemporal Characterization of Ensemble Prediction Systems. The Mean-Variance of Logarithms (MVL) Diagram *Nonlinear Processes in Geophysics*, 15, 109-114.