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The slaving principle allows for a dramatic reduction of
the degrees of freedom of complex systems close to insta-
bilities [1, 2]. The macroscopic behavior is then governed
by a low number of collective modes, whose amplitudes
are called order parameters. An up to now unsolved prob-
lem is the identification of order parameters for stochastic
systems from data. We present two promising approaches
on how to tackle this problem.

Any system of Langevin equations

1=1,...

q: = filg;}) +&i(1)
can be transformed into

iw(t) = Ay u(0) + N, (u(1), s(0) + & ,(0)
§() = Ags(D) + Ny(u(1), s(1) + &)
A, =diag(A,, ..., 1))
Ay =diagAgs1, .. A

where
Re{l4},...,Re{dy} > 0=Re{Asi1},...,Re{,,}.

Close to instabilities, due to separation of time scales, the
slaving principle [1, 2] allows to express the stable mode
amplitudes s; as explicit functions of the order parame-
ters u;:

s; = h;[{u}, 1]

= Closed set of order parameter equations:

it= Ay u+N,(u,sw)+&,1) (1)

Consequence for stationary jpdf (cf. [3]):

p(u,s) = p(siu) f ()
p(slw)= || psilw

i=0+1

p(silu) = Nexp{—(s; — h;[{u;}1)*/Q}

Let q(t) be a time series of m components assumed to be
governed by an unknown system of Langevin equations.
Order parameters are assumed to be obtained by the lin-
ear transformation

m

ui=2=ai]-q]-.

Jj=1

e find a numerical algorithm that extracts the coeffi-
cients a;; from the given time series

» find manifolds s; = h;[{u;}]

e estimate order parameter dynamics (1)

est System: Haken-Zwanzig

As a test system for algorithms we start with the sim-
ple Haken-Zwanzig system with one order parameter and
one enslaved mode amplitude [1, 2]:

(2a)
(2b)

u=cu—us+<¢,(1
§=—ys+u +&(1)
€,y>0, ey

* two stable nodes (£,/7¢,¢€)
e one saddle point (0,0)

e invariant manifold s(u) = (1/y)u* + 0 (u*)

Enslaved mode amplitude s is faster than order parameter u. Hence, the cor-
responding drift coefficients obey

(D) < (D7) -

e estimate drift vector field from time series (s. [4] for a description of the
method)

e search for projection direction with minimal, respectively maximal, abso-
lute value of the drift, averaged over the phase space

estimated u-direction

estimated s-direction
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Figure 1: Estimated u- and s-direction obtained by the drift method.
The arrows show the estimated drift vector field. Each vector is set to
unit length.

The method of information

Information entropy of a stochastic process X (1) (cf. [3]):

[(X) = —fpx(x)lnpx(x)dx

e assumption: i(u) > i(s)

o therefore, under the constraint a{ + a5 = 1:

maximal for (ay,a») =(1,0)

Z(OfIU'I‘ azs) = { (“1,“2) =(0,1)

minimal for

e maximize information with respect to & = u-direction

e minimize information with respect to @ = s-direction

estimated u-direction
estimated s-direction
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Figure 2: Estimated u- and s-directions obtained by the method of max-
imizing, respectively minimizing, the information entropy. The figure
shows color-coded the jpdf p(u, s). The red line corresponds to the esti-
mated u-direction, the green one to the estimated s-direction. Note that
the symmetry is broken because of the finite size of the data set.
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stimation o1 order parameter aynamics

Order parameter dynamics:

= DY (u) + V2D W) (1)
(T (t)=06(t-1)

Kramers-Moyal coetficients:

1 . 1
—lim— ([ X (f+7) — X(¢)

D" (x) =
n't—ot

In>IX(t):x (3)

According to the slaving principle in lowest order approximation:

1
DY) =eu-=-u’
Y

(4)
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Figure 3: The drift coefficient for the order parameter. The red
dots are the result of numerically evaluating Eq. (3) for n =1 with
a method described in [4]. The black curve corresponds to the
expected result according to the slaving principle, Eq. (4).
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Figure 4: Second and fourth Kramers-Moyal coefficient for the
order parameter obtained by numerically evaluating Eq. (3) with
a method described in [4]. Obviously D™ is practically zero, so
according to the Pawula theorem all coefficients D™ with n > 3
vanish too.
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onclusion & References

e The drift vector field and the information entropy seem to be
promising quantities to identify order parameters.

e Order parameter dynamics can be described by effective Langevin
dynamics.

* Methods have to be tested for higher dimensional systems.
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