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The subject

What is hyperbolic chaos?

Each trajectory on the attractor at each point has well defined stable
and unstable manifolds. No tangencies between them.
The “simplest” type of chaos, because permits rigorous mathematical
study.
Structurally stable chaos, because its properties remain unaltered
within a wide range of parameters values.
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The subject

High dimensional hyperbolicity

Hyperbolic chaos in low–dimensional systems is studied well.

The interesting question is to study a hyperbolic chaos in spatially
distributed system with a large number of degrees of freedom.

We take identical oscillators with hyperbolic chaos and construct a chain
introducing diffusive coupling:

the chaos is hyperbolic when the coupling is absent or very small so
that the oscillators are independent or almost independent;
the chaos is hyperbolic when the coupling is very strong so that the
oscillators are fully synchronized;
the subject is to understand what happens between these two limiting
cases.
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Local oscillators with hyperbolic chaos Equations

System of two coupled amplitude equations

Motivation: amplitude equations for two coupled non autonomous van der
Pol oscillators with hyperbolic chaos
[S. P. Kuznetsov, Phys. Rev. Lett. 95 (2005) 144101]

ȧ = Aa cos(2�t/T )− (1 + ic)∣a∣2a − i� b

ḃ = −Ab cos(2�t/T )− (1 + ic)∣b∣2b − i� a2

complex variables a ≡ a(t) and b ≡ b(t);
external force with amplitude A and period T ;
rotation with frequency c if no force and interaction;
skew coupling with parameter �.

Back
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ȧ = Aa cos(2�t/T )− (1 + ic)∣a∣2a − i� b
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Local oscillators with hyperbolic chaos Test of hyperbolicity

Detecting hyperbolicity using Covariant Lyapunov Vectors

1 Compute CLVs at some point of the attractor.
2 Vectors corresponding to positive Lyapunov exponents span expanding

subspace of the tangent space, and those with negative exponents
span the contracting subspace.

3 Mutual orientation of two subspaces is characterized by the principal
angles1. If the first principal angle �1 vanishes then the contracting
and expanding subspaces have a tangency. The tangency means the
violation of hyperbolicity.

4 Store a lot of �1 at different points of the attractor and compute their
distribution P(�1). Attractor is hyperbolic if this distribution is clearly
separated from the origin.

1G. H. Golub, C. F. van Loan “Matrix computations”, The Johns Hopkins University
Press, Baltimore, MD, 1996
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Local oscillators with hyperbolic chaos Test of hyperbolicity

Distributions of the first principal angle �1
Hyperbolicity at c = 0, and c = 2. Non-hyperbolic chaos at c = 4.

Show equations
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Hyperbolic chaos in the chain of oscillators Equations

Equations of the chain

Chain of N oscillators with hyperbolic chaos:

ȧn = A cos(2�t/T )an − (1 + ic)∣an∣2an − i� bn + �(an)/h2,

ḃn = −A cos(2�t/T )bn − (1 + ic)∣bn∣2bn − i� a2
n + �(bn)/h2.

diffusive coupling: �(zn) = zn−1 − 2zn + zn+1 (n = 1, . . .N − 2);
h controls the strength of the coupling;
no-flux b.c.: �(z0) = 2(z1 − z0), �(zN−1) = 2(zN−2 − zN−1).

We want to know when this chain demonstrates hyperbolic chaos.

Control parameters:
h controls the coupling (small h = high coupling);
c influences on the local hyperbolicity.
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Hyperbolic chaos in the chain of oscillators Distributions of principal angles

Scenario at c = 0, N = 4
When h grows, i.e., the coupling gets smaller:

1 �1 > 0. Full chaotic
synchronization. Hyperbolic
chaos.

2 �2 > 0. Chaos is still hyperbolic.

3 �3 > 0. Destruction of
hyperbolicity.

4 �4 > 0. Hyperbolicity is
recovered. 10-2

10-1

0 π/8 π/4 3π/8 π/2

θ1

P
(θ

1)
4. h=3.5, λ4>0

10-3

10-2
3. h=3.2, λ3>0

10-2

10-1
2. h=2.5, λ2>0

10-2

10-1
1. h=1.9, λ1>0
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Hyperbolic chaos in the chain of oscillators Lyapunov exponents

Lyapunov exponents and min. angle �1 at c = 0, N = 10
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Hyperbolic chaos in the chain of oscillators Lyapunov exponents

Lyapunov exponents and min. angle �1 at c = 2, N = 10
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Hyperbolic chaos in the chain of oscillators Lyapunov exponents

What have we learned from these pictures?

Hyperbolicity at strong coupling exists:
1 When oscillators are fully synchronized and there is 1 positive

Lyapunov exponent.
2 When there are 2 positive Lyapunov exponents at c < 1 (domain 2).
3 When full synchronization is absent, but the chain has 1 positive

Lyapunov exponent at c > 1 (domains A and B).
The chaos is also hyperbolic when the coupling is small so that each
oscillator has its own positive Lyapunov exponent.

As we shall see below, the chaos at strong coupling is hyperbolic when the
chain is synchronized somehow.
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Hyperbolic chaos in the chain of oscillators Synchronization of complex phases

Difference between two complex phases

Δ� = arg(aN/2)− arg(aN/2+1)

c = 2, doms. A,B
Strong synchroniza-
tion of complex
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Hyperbolic chaos in the chain of oscillators Synchronization of complex phases

Variance of ∣Δ�∣ against h

Chaos is hyperbolic when oscillators are synchronized!

 0

 0.2

 0.4

 0.6

 0.5  1  1.5  2  2.5

V
ar

 |∆
φ|

h

c=4

 0

 0.2

 0.4

 0.6

V
ar

 |∆
φ|

A (hyp) B (hyp)

c=2
c=3

 0

 0.2

 0.4

 0.6
V

ar
 |∆

φ|

1 2 (hyp) 3

c=0
c=0.5

Kuptsov (Saratov) Hyperb. chaos in extended syst. ECODYC’10 14 / 26



Hyperbolic chaos in the chain of oscillators Principal Components Analysis

How can we detect synchronization in a chain of oscillators?

Synchronization results in the reduction of the effective dimension of the
manifoldℳ containing the attractor.

no synchronization, synchronization,
ℳ⊂ ℝ2 ℳ has one essential dimension
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Hyperbolic chaos in the chain of oscillators Principal Components Analysis

The idea of Principal Components Analysis

Collect a set of points x⃗(1), x⃗(2), . . . , where
x⃗(t) = {x1(t), . . . , xN(t)}.
Compute the covariance matrix

C =

⎛⎜⎝cov(x1, x1) . . . cov(x1, xN)
...

. . .
...

cov(xN , x1) . . . cov(xN , xN)

⎞⎟⎠ .

Compute eigenvalues and eigenvectors of C and sort them by
descending of eigenvalues. Eigenvectors are orthogonal to each other.
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Hyperbolic chaos in the chain of oscillators Principal Components Analysis

The idea of Principal Components Analysis

The first eigenvector p⃗1 goes
along the most extended
direction of the cloud, p⃗2 gives
the second important dimension
and so on.
Eigenvalues �i characterize the
sizes of the cloud in these
directions.

x1(t)
x 2

(t
)

p⃗1

p⃗2
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Hyperbolic chaos in the chain of oscillators Principal Components Analysis

Local PCA for multidimensional attractor

The supporting manifoldℳ may not be flat. The PCA should be applied
locally.

Take a point on the attractor.
Collect a cloud of attractor points that fall in a small vicinity of the
first point.
Construct the covariance matrix and find its sorted eigenvalues �i .
Repeat this for many points of the attractor and average the
eigenvalues.

We expect that in presence of the synchronization several first averaged
eigenvalues are much higher than all others.
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Hyperbolic chaos in the chain of oscillators Principal Components Analysis

Averaged PCA eigenvalues and Lyapunov exponents, c = 0
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Hyperbolic chaos in the chain of oscillators Principal Components Analysis

Averaged PCA eigenvalues and Lyapunov exponents, c = 2
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Hyperbolic chaos in the chain of oscillators Principal Components Analysis

What have we learned now?

For the considered chain we observe:
1 Chaos at strong coupling (small h) is hyperbolic when the chain is

synchronized.
2 The synchronization manifests itself as a small effective dimension of

the supporting manifoldℳ.
3 In presence of the synchronization the number of essential dimensions

ofℳ is equal to the number of positive Lyapunov exponents.
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Hyperbolic chaos in the chain of oscillators Kaplan–Yorke dimension and Kolmogorov–Sinai entropy

Kaplan–Yorke dimension and Kolmogorov–Sinai entropy
At strong coupling (small h) we observe:

H�(h) (upper estimate of KS-entropy as a sum of positive Lyap.
exponents) has a break when hyperbolicity disappears.
Hyperbolic chaos exists at small values of KY-dimension DKY.
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Results

Results: Hyperbolic chaos in the chain

When the coupling is strong, the chaos is hyperbolic if the chain is
synchronized:

full chaotic synchronization;
weak synchronization of complex phases at 2 positive Lyapunov
exponents, and 2 essential dimensions of the supporting manifold;
strong synchronization of complex phases at 1 positive Lyapunov
exponent, and 1 essential dimension of the supporting manifold.

Otherwise, hyperbolicity exists when subsystems are almost independent so
that each oscillator has its own unstable direction.

Kuptsov (Saratov) Hyperb. chaos in extended syst. ECODYC’10 23 / 26



Results

Results: Hyperbolic chaos in the chain

When the coupling is strong, the chaos is hyperbolic if the chain is
synchronized:

full chaotic synchronization;
weak synchronization of complex phases at 2 positive Lyapunov
exponents, and 2 essential dimensions of the supporting manifold;
strong synchronization of complex phases at 1 positive Lyapunov
exponent, and 1 essential dimension of the supporting manifold.

Otherwise, hyperbolicity exists when subsystems are almost independent so
that each oscillator has its own unstable direction.

Kuptsov (Saratov) Hyperb. chaos in extended syst. ECODYC’10 23 / 26



Results

Results: Hyperbolic chaos in the chain

When the coupling is strong, the chaos is hyperbolic if the chain is
synchronized:

full chaotic synchronization;
weak synchronization of complex phases at 2 positive Lyapunov
exponents, and 2 essential dimensions of the supporting manifold;
strong synchronization of complex phases at 1 positive Lyapunov
exponent, and 1 essential dimension of the supporting manifold.

Otherwise, hyperbolicity exists when subsystems are almost independent so
that each oscillator has its own unstable direction.

Kuptsov (Saratov) Hyperb. chaos in extended syst. ECODYC’10 23 / 26



Results

Results: Hyperbolic chaos in the chain

When the coupling is strong, the chaos is hyperbolic if the chain is
synchronized:

full chaotic synchronization;
weak synchronization of complex phases at 2 positive Lyapunov
exponents, and 2 essential dimensions of the supporting manifold;
strong synchronization of complex phases at 1 positive Lyapunov
exponent, and 1 essential dimension of the supporting manifold.

Otherwise, hyperbolicity exists when subsystems are almost independent so
that each oscillator has its own unstable direction.

Kuptsov (Saratov) Hyperb. chaos in extended syst. ECODYC’10 23 / 26



Results

Results: Hyperbolic chaos in the chain

When the coupling is strong, the chaos is hyperbolic if the chain is
synchronized:

full chaotic synchronization;
weak synchronization of complex phases at 2 positive Lyapunov
exponents, and 2 essential dimensions of the supporting manifold;
strong synchronization of complex phases at 1 positive Lyapunov
exponent, and 1 essential dimension of the supporting manifold.

Otherwise, hyperbolicity exists when subsystems are almost independent so
that each oscillator has its own unstable direction.

Kuptsov (Saratov) Hyperb. chaos in extended syst. ECODYC’10 23 / 26



Results

Results: Number positive Lyapunov exponents

Strong coupling: hyperbolic chaos can survive at 1 or 2 positive
Lyapunov exponents.
Hyperbolicity at 3 or more positive exponents was not detected.
Weak coupling: hyperbolic chaos reappears when each oscillator has its
own unstable direction, i.e., has its own positive Lyapunov exponent.
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Results

Results: Effective dimension of the supporting manifold

Hyperbolic chaos at strong coupling:
observed when the manifold has 1 or 2 essential dimensions;
the number of essential dimensions is equal to the number of positive
Lyapunov exponents.
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Results

Results: KS-entropy and KY-dimension

Violation of the hyperbolicity is indicated by a break of
Kolmogorov–Sinai entropy.
For the strong coupling the hyperbolic chaos survives at low
Kaplan–Yorke dimension.
For the weak coupling the hyperbolicity reappears at very high
Kaplan–Yorke dimension.
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