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Uniformly hyperbolic attractors were introduced about 40 years ago, due to 
Smale, Anosov, Alekseev, Williams, Sinai, Ruelle, Newhouse and others. Traditional 
examples of uniformly hyperbolic attractors are discrete-time geometric models, like 
Smale-Williams attractor or Plykin attractor.  

 

  

Initially, it was expected that they will be adequate for many real situations of 
chaotic behavior, like hydrodynamic turbulence etc. After time passed, it became 
clear that the early hyperbolic theory is too narrow to include majority of chaotic 
systems interesting for applications. So, efforts of matematicians were redirected on 
generalizations of the theory appropriate to wider classes of systems. E.g. concepts 
were elaborated of nonuniformly hyperbolic atteactors, partially hyperbolic systems, 
quasi-hyperbolic or singular hyperbolic attractors, quasiattractors, etc.  

Largely forgotten remains the question: Is it possible, nevertheless, to 
find real-world systems, or to design realizable models in physics and 

technology, with uniformly hyperbolic attractors? 



  
1) Some physical systems allow natural description in discretized time, and it is interesting to 

consider a possibility for uniformly hyperbolic attractors to appear in the respective maps. In 
addition to the geometric constructions, we need to have discrete-time models represented 
explicitly to compute practically significant characteristics of chaos.  

2) Next, we have to turn to the continuous time case, as much more relevant in physics and 
technology; appropriate models should be designed and represented explicitly by differential 
equations.  

3) It is desirable to implement the uniformly hyperbolic attractors with combination of structural 
elements conventional in the oscillation theory and applications, like oscillators, couplings, and 
feedback loops.  

4) The designed models has to be created, as real operating devices, e.g. in electronics, 
mechanics, nonlinear optics. Finally, applications for these devices have to be elaborated, and 
advantages over possible alternatives sustained. 

The problem seems to be of fundamental significance. An analogy may be noticed with such a 
historical precedent as establishing correspondence between self-oscillations and limit cycles. 
Like the limit cycles in the previous century, the hyperbolic attractors should find their place, 
as mathematical images of real nonlinear phenomena. Especially, because of structural 
stability: as objects, insensitive to variations in underlaying equations, the hyperbolic attrators 
are surely obliged to present in real-world nonlinear phenomena!  

The present talk is aimed on a review of results obtained in the outlined 
direction by our research team is Saratov (in collaboration with prof. 

A.Pikovsky in Potsdam). 



Uniformly hyperbolic attractor is an 
attracting object in phase space of a dissipative 
dynamical system that consists exclusively of 
saddle trajectories.  

Their stable and unstable manifolds have the 
same dimension for all trajectories on the 
attractor; they should not be touching; only 
crossings at nonzero angles are allowed.  

 

The hyperbolic nature of attractors can be verified with the cone criterion. The picture below 
illustrates this for a discrete-time system (iterated map).  

 

Cones of expanding and contracting infinitesimal perturbation vectors must exist at every point 
of a region containing the attractor, smoothly depending on the position. An image of expanding 
cone must be placed inside expanding cone at the image point, and preimage of contracting cone 
must be placed inside contracting cone at the preimage point.  

For flows the same considerations are applicable in terms of Poincaré map. 



The geometric constructions of hyperbolic attractors 
Smale-Williams attractor 

 

 

 

Plykin attractors 
Original Plykin attractor Plykin-type attractor 

 
 

 



Smale-Williams attractors in a simple mechanical setup 
Consider a particle on a plane (x, y) with friction force proportional to instant 
velocity, and in potential field 222
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the unit circle. With period T, the particle undergoes kicks, accepting momentum 
),( yxP , depending on the instant position ),( yx . To define the field P , consider 

a set of particles placed initially on the unit circle ϕ=ϕ= sin,cos yx . After a 
kick, each particle accepts some momentum, and, in absence of the potential 
field, it would stop at ),(),,( yxPyyyxPxx yx +=′+=′ . Require the particles to 
come just at the unit circle, forming a twofold loop, we set ϕ′=′ϕ′=′ cos sin, yx , 

ϕ=ϕ′ 2 . It is the case if we specify the field components as  

.2sin2sin),(,12cos2cos),( 2 yxyyyyxPxxxxyxP yx −=ϕ−ϕ=−′=−−=ϕ−ϕ=−′=  

With unit mass and unit friction coefficient, introducing μ as intencity of the potential field, we get  
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The largest Lyapunov exponent: . Dimensions at μ=0.44: DKY=1,328, DGH=1,325. 2ln1
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Design of hyperbolic attractors by means of evolution in 
successive stages 

Suspending Plykin-type attractor: the Hunt model 

Hunt model is a non-autonomous system  
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where the functions *f  and *g  are continuous 
and differentiable, of period 2π in time.  

[Hunt T.J, PhD Thesis, 2000; Aidarova Yu.S. and 
Kuznetsov S.P., arXiv:0901.2727] 

 

 
 

Lyapunov exponents: 213.1,9625.0 21 −=Λ=Λ , and attractor dimension 79.1||/1 21 =ΛΛ+≈KYD  



Plykin-type attractor in a map generated by a flow on a sphere 
[S.P. Kuznetsov, CNSNS, 14, 2009, 3487] 

I. Flow down along circles of latitude, 10 <≤ t ,  
 .  0,, 22 =ε=ε−= zyxyxyx &&&

II. Differential rotation around z-axis, 21 <≤ t , 
 0,)2/12/(,)2/12/( =+π−=+π= zxzyyzx &&& .  

III. Flow down to the equator, 32 <≤ t , 
 .  

43
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IV. Differential rotation around x-axis, <≤ t , 
 yxzzxyx )2/12/(,)2/12/(,0 +π=+π−== &&& .  

Equivalently, it may be written as a unified set of equations: 
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The Poincaré map 
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Lyapunov exponents: 959.01 =Λ , 141.12 −=Λ , and attractor dimension 841.1||/1 21 =ΛΛ+≈KYD . 



Plykin-type attractor on a plane 
The variable change: 
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A version with smooth coefficients 
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At ε=0.72 and K=1.9 the Lyapunov exponents are 221.01 ≈λ  and 315.02 −≈λ , or for the Poincaré map 

884.011 ≈λ=Λ T , 260.122 −≈λ=Λ T , and the Kaplan-Yorke dimension is 70.1≈KYD . 

  



Flow model with the Smale-Williams attractor  
[S.P.Kuznetsov, AND (Saratov), 17, 2009, No 4, 5-34; in Russian] 

I. Differential rotation around x-axis, 10 <≤ t , 
xyzxzyx 22 ,,0 ππ =−== &&& . 

II. Nonunifirm displacement with compression 
in y-direction, 21 <≤ t   

xzbazaxydyzx 2
22

2 ),(, ππ =+−−−=−= &&& . 

III. Compression towards a unit circle 
in the plane z=0, 32 <≤ t   

zdzyxyyyxxx 2
2222 ),1(),1( −=−−μ=−−μ= &&&  

Equivalently, it may be written as a unified set of 
equations: 
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Design of hyperbolic attractors by means of phase manipulation 
in alternately excited oscillators 

Smale-Williams attractor in coupled non-autonomous van der Pol oscillators 
[S.P.Kuznetsov, Phys. Rev. Lett., 95, 2005, 144101] 

22
0

2
0

2
0

2

4)cos(

cos)cos(

xyyytAy

tyxxxtAx

ε=ω+−Ω−−

ωε=ω+−Ω−

&&&

&&&
 )2(mod21 πθ=θ + nn  

 

ω0=2π, T=10, A=3, ε=0.5 

 

  
 



Parameters: T=2π/Ω=6, A=5, ε=0.5 
yvxuyuxvxuxyxxuxxx && 1
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Dynamics in time: chaos in phase 

Lyapunov exponents: 
538.6,605.4,602.2,6832.0 4321 −=Λ−=Λ−=Λ=Λ

Dimensions: DGP=1.252, DKY=1.263 

Attractor: Cantor structure 

 
Cone criterion verification 
(at the most worse point) 

 
Kuznetsov&Sataev, Phys.Lett. A365, 2007, 97 

Stable and unstable manifolds UPO in attractor 

 



Electronic experiment 
[S.P.Kuznetsov, E.P.Seleznev, JETP 102, 2006, 355] 

 

 

 

 



Autonomous coupled oscillators with non-resonant excitation transfer 
Smale-Williams attractor in minimal dimension [S.P.Kuznetsov, A.Pikovsky, Physica D232, 2007, 87] 
(1) Start with a version of the predator-pray model 
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(2) Introduce “oscillatory” variables x and y to have  and 
2  satisfying these equations. 
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(3) Introduce additional coupling to ensure transfer of excitation from one 
oscillator to the second and back, with doubling of the phase of the 
oscillations in the course of the transmission.  
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Parametric generator of chaos  
[S.P.Kuznetsov, JETP 106, 2008, No. 2, 380] 
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Application of the phase manipulating principle 
in time-delayed systems 

[S.P. Kuznetsov and V.I Ponomarenko, Tech. Phys. Lett., 34, 2008, 771–773] 
[S.P. Kuznetsov and A.S. Pikovsky, Europhysics Letters,   84, 2008, 10013] 

An appropriate class for implementation of the phase manipolation 
principle is represented by systems with delayed feedback.  

In such systems it is possible to arrange generation of the hyperbolic 
chaos with a single active element.  

On the other hand, the mathematical description is more difficult 
than that for low-dimensional models, because of infinite
dimension of the state space. Indeed, to determine an
instantaneous state one needs to specify not a finite set of variables, 
but a fragment of a signal on a time interval of the delay time.  

 



A self-oscillatory element with slow periodic variation 
of bifurcation parameter, and with auxiliary signal 

[S.P. Kuznetsov and V.I Ponomarenko, Tech. Phys. Lett., 34, 2008, 771–773] 

 

ttxtxxxxTtAx 0
2
0

2 cos)()())/2cos(( ωτ−τ−ε=ω+−π− &&&&  

Approximately: )2(modconst21 π+ϕ=ϕ + nn  
 

2.0,5.5,,2,2 4
31

0 =ε==τΩπ=π=ω − ATT  

 

 

 
 

 

Lyapunov exponents: .1171.5,9178.4,8844.0,6851.0 5321 −=Λ−=Λ−=Λ=Λ  KY-dimension: 77.1=D  



Experiment 
[S. P. Kuznetsov and V. I. Ponomarenko, Tech. Phys. Lett., 34, 2008, No 9, 771–773] 
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Conclusion 
 

• Now, we get long-expected physical examples of systems with uniform 
hyperbolic attractors in their Poincaré maps. This is a “breakthrough to 
a land of hyperbolicity” because now one can construct many other 
examples exploiting the property of structural stability.  

• There are several approaches to design systems with hyperbolic 
attractors, e.g. dynamics under short pulses, constructing dynamics as 
a sequence of distinct stages, manipulating phases of excitation 
trasferred between alternately excited oscillators, parametric 
generators, and in oscillators with delayed feedback.  

• At last, some of the systems we propose allow implementation e.g. in 
electronics, mechanics, nonlinear optics.  

• A possibility of physical realization of the hyperbolic chaos opens 
prospects for applications of the hyperbolic theory existed since now 
as a purely mathematical discipline.  
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