## Evidence of dispersion relations for the response of the Lorenz 63 system

## Valerio Lucarini

Department of Meteorology
Department of Mathematics
University of Reading Reading, UK

Email: v.Jucarini@reading.ac.uk

## Motivation

- The analysis of how systems respond to external perturbations to their steady state constitutes one of the crucial subjects of investigation in physics and mathematics
- In particular, we are concerned with the response of chaotic systems:
- How do their statistical properties change when (small) time dependent perturbations are applied?
- Is it possible to develop a perturbation theory?
- Can we use the unforced fluctuations of the system for deducing its properties when perturbations are applied (FDT)?
- Can we find tools for decodifying a large class of dynamical systems?


## Background

- In quasi-equilibrium statistical mechanics, the Kubo theory ('50s) allows for an accurate treatment of perturbations to the canonical equilibrium state
- When considering general dynamical systems (e.g. forced and dissipative), the situation is much worse $\longrightarrow$ FD relation does not apply
- Recent advances due mostly to Ruelle (late '90s) have lead to the idea that for SRB systems it is possible to define a perturbative theory of the response to small perturbations to the vector field. We follow this direction...


## Perturbations to NESS Systems

## Axiom A systems

- Axiom A dynamical systems are very special
- Include Anosov flows (hyperbolic, struct. stable, dense)
- Non-wandering set is hyperbolic \& periodic points are dense
- SRB invariant measure: time averages converge Lebesgue a.e. to the ensemble averages for measurable observables
- For these systems all statistical properties are well-defined
- Often, when we perform numerical simulations, we more or less implicitly set ourselves in these hypotheses
- Not generic systems, but, following the chaotic hypothesis by Gallavotti and Cohen (1995, 1996), systems with many d.o.f. can be treated as if they were Axiom $A$ systems when macroscopic averages are considered.
- These are good physical models!!!


## SRB measure

- The invariant measure of the unperturbed system is not absolutely continuous w.r.t. Lebesgue; it is so only along the unstable (and neutral) manifold, whereas it is singular in the stable directions (effect of the contraction!)
- Locally, "Cantor set times a smooth manifold".
- Therefore, it is mathematically very different from the smooth measure of the canonical ensemble, the common framework for equilibrium (or quasiequilibrium in the Kubo sense) thermodynamics.
- But...


## Ruelle Response Theory

- If the Axiom A flow is perturbed as: $\dot{x}=F(x)+e(t) X(x)$
- We can express the expectation value of an observable $\Phi$ as: $\left\langle\Phi(t)=\left\langle\left.\Phi\right|_{0}+\sum_{n=1}^{\sum}\left(\Phi^{(i)}(t)\right.\right.\right.$
- where the $n^{\text {th }}$ order perturbation can be expressed as:

$$
\langle\Phi\rangle^{(n)}(t)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} \mathrm{d} \sigma_{1} \mathrm{~d} \sigma_{2} \ldots \mathrm{~d} \sigma_{n} G^{(n)}\left(\sigma_{1}, \ldots, \sigma_{n}\right) e\left(t-\sigma_{1}\right) e\left(t-\sigma_{2}\right) \ldots e\left(t-\sigma_{n}\right)
$$

## This is a perturbative theory...

- with a causal Green function:

$$
\begin{aligned}
G^{(n)}\left(\sigma_{1}, \ldots, \sigma_{n}\right)=\int \rho_{S R B}(\mathrm{~d} x) & \Theta\left(\sigma_{1}\right) \Theta\left(\sigma_{2}-\sigma_{1}\right) \ldots \Theta\left(\sigma_{n}-\sigma_{n-1}\right) \times \\
& \times \Lambda \Pi\left(\sigma_{n}-\sigma_{n-1}\right) \ldots \Lambda \Pi\left(\sigma_{2}-\sigma_{1}\right) \Lambda \Pi\left(\sigma_{1}\right) \Phi(x)
\end{aligned}
$$

- Expectation value of an operator evaluated over the invariant measure $\rho_{S R B}(\mathrm{~d} x)$ of the unperturbed flow!
o where:
$\Lambda(\bullet)=X(x) \nabla(\bullet)$ and

Projection on the perturbation flow

- Conventional Kubo theory is a special case


## Linear Systems

- Let us consider a general linear system whose input $l(t)$ and output $O(t)$ are connected by the following linear relationship:

$$
O(t)=\int_{-\infty}^{\infty} a\left(t-t^{\prime}\right) I\left(t^{\prime}\right) d t^{\prime}
$$

- By applying Fourier Transform to both members we obtain:

$$
O(\omega)=a(\omega) I(\omega)
$$

- Is there a connection between the properties of $a(t)$ and those of $a(\omega)$ ?


## Titchmarsch Theorem

## Theorem 1. (Titchmarsch)

The three statements 1., 2 ., and 3 . are mathematically equivalent:

1. $a(t)=0$ if $t \leq 0$ and $a(t) \in \mathrm{L}^{2}$.
2. $a(\omega)=\mathrm{F}[a(t)] \in \mathrm{L}^{2}$ if $\omega \in \mathbb{R}$ and if

$$
a(\omega)=\lim _{\omega^{\prime} \rightarrow 0} a\left(\omega+\mathrm{i} \omega^{\prime}\right),
$$

then $a\left(\omega+\mathrm{i} \omega^{\prime}\right)$ is holomorphic if $\omega^{\prime}>0$.
3. Hilbert transforms $[39]$ connect the real and imaginary part of $a(\omega)$ as follows:

$$
\begin{array}{|l}
\operatorname{Re}\{a(\omega)\}=\frac{1}{\pi} \mathrm{P} \int_{-\infty}^{\infty} \frac{\operatorname{Im}\left\{a\left(\omega^{\prime}\right)\right\}}{\omega^{\prime}-\omega} \mathrm{d} \omega^{\prime} \\
\operatorname{Im}\{a(\omega)\}=-\frac{1}{\pi} \mathrm{P} \int_{-\infty}^{\infty} \frac{\operatorname{Re}\left\{a\left(\omega^{\prime}\right)\right\}}{\omega^{\prime}-\omega} \mathrm{d} \omega^{\prime}
\end{array}
$$

## Kramers-Kronig relations

- Every causal linear model has to obey this constraint;
- The in-phase and out-of-phase responses of a causal system are connected by Kramers-Kronig relations:
- If we have measurements of the real (imaginary) part of the susceptibility, we can derive via K-K the best estimate of the other consistently with the principle of causality

$$
\begin{aligned}
& \Re\left\{\chi^{(1)}(\omega)\right\}=\frac{2}{\pi} \rho \int_{0}^{\infty} \frac{\omega^{\prime} \Im\left\{\chi^{(1)}\left(\omega^{\prime}\right)\right\}}{\omega^{\prime 2}-\omega^{2}} \mathrm{~d} \omega \\
& \mathrm{G}\left\{\chi^{(1)}(\omega)\right\}=-\frac{2 \omega}{\pi} \rho \int_{0}^{\infty} \frac{\Re\left\{\chi^{(1)}\left(\omega^{\prime}\right)\right\}}{\omega^{\prime 2}-\omega^{2}} \mathrm{~d} \omega^{\prime}
\end{aligned}
$$

with: $\quad \chi^{(1)}(\omega)=\left[\chi^{(1)}(-\omega)\right]^{*}$

## Other results

Theorem 2. (superconvergence) If

Nussenzweig, 1972

$$
g(y)=\mathrm{P} \int_{0}^{\infty} \frac{f(x)}{y^{2}-x^{2}} \mathrm{~d} x
$$

where

1. $f(x)$ is continuously differentiable,
2. $f(x)=O\left[(x \ln x)^{-1}\right]$,
then for $y \gg x$ the following asymptotic expansion holds

$$
g(y)=\frac{1}{y^{2}} \int_{0}^{\infty} f(x) \mathrm{d} x+O\left(y^{-2}\right) .
$$

By applying this theorem to the K-K, and considering the asymptotic behaviour, we obtain the sum rules

## Nonlinear susceptibilitijes

- If my input has one or more monochromatic components, the $n^{\text {th }}$ order response will be nonzero for all the sums of $n$-combinations of the input frequencies.
- Example: input has a monochromatic component at $\omega= \pm \omega_{0}$
- Linear response at $\omega= \pm \omega_{0}$
- Second order response at $\omega= \pm 2 \omega_{0}$; $\omega=0$
- Third order response at $\omega= \pm 3 \omega_{0} ; \omega= \pm \omega_{0}$
- Can we write KK relations for the corresponding susceptibilities?


## Scandolo's Theorem

- Specific classes of nonlinear susceptibilities obey KK;
- Basically, in the case of monochromatic input, only the nth order susceptibility responsible for the nth order harmonic generation process obeys KK
- Linear response:
- 3rd order HG:
- Kerr susceptibility

$\chi^{(3)}(3 \omega, \omega, \omega, \omega)$

$\rightarrow$ KK rels. apply
$\rightarrow$ KK rels. apply
$\rightarrow$ KK rels. don't apply
- KK don't apply for nonlinear correction to linear
- This is a formal, model-independent result (developed for optics)


## Dispersion Relations for NESS systems

## Asymptotic Behavior

- If $G^{(n)}(t) \sim f^{\beta}$ for $t \rightarrow 0$, we have that:

$$
\lim _{\omega_{0} \rightarrow \infty} \omega_{0}^{\beta+n} \chi^{(n)}\left(\omega_{0}, \ldots, \omega_{0}\right)=\alpha \in \mathbb{C} \backslash\{0\}
$$

Q and: $\beta+n=2 \gamma$ and $\alpha=\alpha_{R} \in \mathbb{R}$, otherwise $\beta+n=2 \gamma-1$ and $\alpha=\mathrm{i} \alpha_{I}, \alpha_{I} \in \mathbb{R}$

- because the real part and the imaginary part of the susceptibility have opposite parity.


## Therefore:

## - Kramers Kronig relations:

$$
\begin{align*}
& -\frac{\pi}{2} \omega_{0}^{2 p-1} \operatorname{Im}\left\{\left[\chi^{(n)}\left(\omega_{0}, \ldots, \omega_{0}\right)\right]^{m}\right\}=\mathrm{P} \int_{0}^{\infty} \mathrm{d} \omega_{0}^{\omega_{0}^{\prime 2 p}} \frac{\left.{ }^{2} \operatorname{Re}\left\{\chi^{(n)}\left(\omega_{0}^{\prime}, \ldots, \omega_{0}^{\prime}\right)\right]^{m}\right\}}{\left(\left(\omega_{0}^{2}-\omega_{0}^{2}\right)\right.},  \tag{26}\\
& \frac{\pi}{2} \omega_{0}^{2 p} \operatorname{Re}\left\{\left[\chi^{(n)}\left(\omega_{0}, \ldots, \omega_{0}\right)\right]^{m}\right\}=\mathrm{P} \int_{0}^{\infty} \mathrm{d} \omega_{0}^{\prime} \frac{\omega_{0}^{2 p+1} \operatorname{Im}\left\{\left[\chi^{(n)}\left(\omega_{0}^{\prime}, \ldots, \omega_{0}^{\prime}\right)\right]^{m}\right\}}{\left(\omega_{0}^{\prime 2}-\omega_{0}^{2}\right)}, \tag{27}
\end{align*}
$$

with $p=0, \ldots, m \gamma-1$ if $\beta+n=2 \gamma$, and $p=0, \ldots, \operatorname{int}(m \gamma-(m+1) / 2)(\operatorname{with} \operatorname{int}(x)$ indicating the integer part of $x$ ) if $\beta+n=2 \gamma-1$.

- This, plus the ensuing sum rules, is the end of the story
- But, let's see an application...
L. 2008, 2009


## Lorenz 63 system <br> $$
\dot{x}=\sigma(y-x)
$$ <br> $$
\dot{y}=r x-y-x z
$$ <br> $$
\dot{z}=x y-b z
$$

- With the classical values $\sigma=10 ; r=28 ; b=8 / 3$
- Actually, in principle this is a bad model:
- Not Axiom -A
- Not Uniformly Hyperbolic
- Singular hyperibolic (Bonattil et al., 2005)
- We add the perturbation flow:

$$
e(t) X=\left(\begin{array}{l}
0 \\
x \cdot 2 \varepsilon \cos \left(\omega^{\prime} t\right) \\
0
\end{array}\right)
$$

## Linear Response

- We consider the observable $\Phi(x, y, z)=z$
- Background (noise) :
$\langle z(\omega)\rangle_{0}=\frac{1}{T} \int_{0}^{T} d t f_{o}^{t}(z) \exp [-i \omega t]=\frac{1}{N \tau} \sum_{j=1}^{N} f_{0}^{j \tau}(z) \exp [-i \omega j \tau]$
- Perturbed signals:
$\langle z(\omega)\rangle_{\varepsilon, \omega^{\prime}}=\frac{1}{T} \int_{0}^{T} d t f_{\varepsilon, \omega^{\prime}}^{t}(z) \exp [-i \omega t]=\frac{1}{N \tau} \sum_{j=1}^{N} f_{\varepsilon, \omega^{\prime}}^{j \tau}(z) \exp [-i \omega j \tau]$
Our signal:

$$
\delta\langle z(\omega)\rangle_{\varepsilon, \omega^{\prime}}=\langle z(\omega)\rangle_{\varepsilon, \omega^{\prime}}-\delta\langle z(\omega)\rangle_{0}
$$

## Attention!!

- As opposed to the quasi-equilibrium case, the background flow has a component with frequency $\omega$ - due to noise [but with random phase], since the system has naturally a continuous spectrum.
- So, in order to detect the signal, we need to distinguish it from noise.
- Long Integrations (the peaks become more pronounced
- Ensemble of simulations in order to average out the phase of the background signal


## Linear Susceptibility

- Definition: $x_{z}^{(1)}(\omega)=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \delta\langle z(\omega)\rangle_{\varepsilon, \omega}$



## Asymptotic behavior



## Sum rules



## Second Harmonic Susceptibility

- Signal: $\quad \delta\langle z(2 \omega)\rangle_{\varepsilon, \omega}=\langle z(2 \omega)\rangle_{\varepsilon, \omega}-\delta\langle z(2 \omega)\rangle_{0}$
- Definition: $\quad x_{z}^{(2)}(2 \omega ; \omega, \omega)=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon^{2}} \delta\langle z(2 \omega)\rangle_{\varepsilon, \omega}$
-The limit is far from being trivial ...
- An old tale of solid state physicists:

Miller's rule: $\chi_{z}^{(2)}(2 \omega ; \omega, \omega) \propto \chi_{z}^{(1)}(2 \omega) \chi_{z}^{(1)}(\omega) \chi_{z}^{(1)}(\omega)$ Bassani and Scandolo 1995

## Real Part of the susceptibility



## Imaginary Part of the susceptibility



## Asymptotic behavior

- Since: $x_{z}^{(2)}(2 \omega ; \omega, \omega)=\frac{\sigma\left\langle x^{2}\right\rangle_{0}}{\omega^{4}}+o\left(\omega^{4}\right)$



## Sum Rules - a



## Sum Rules - b



## Finite-size e-perturbations



- Large values of epsilon, regions where motion is periodic (purple) $\Longrightarrow$ theory K.O.


## Windows of periodicity..

- Using finite size e-perturbations we may encounter WoP for some $\omega_{j}$ (usually resonances of the system)
- If Axiom $A$, the extent of WoP should vanish as perturbation strength $\longrightarrow 0$
- The values of susceptibility $\chi_{e}\left(\omega_{j}\right)$ are "wrong"
- We are out of the validity of the Ruelle expansion, SRB measure is not smoothly deformed
- KK relations do not work properly anymore
- We can nevertheless cure these points
- We use KK of the "measured" real part evaluated at point $\omega_{j}$ as first guess of the imaginary part of the "correct" value
- We do the same for imaginary part $\longrightarrow$ real part
- After just one iteration the agreement is excellent
- Analytic continuation of (a well defined) $\chi$ ? Multistability?
- Preparing a new paper on that (not using Lorenz 63!).


## Conclusions

- We have extended the Ruelle response theory and have clarified its relationship with the Kubo approach
- We have defined a new theory of linear and nonlinear dispersion relations for chaotic systems. The theory is based on the principle of causality - and that's all.
- If a model does not obey $K-K$, it is not a good model
- We have proved its precision and applicability in a specific (and problematic) low-dimensional case
- ... but what if we add stochastic perturbations? Will the FD relation be again in place (Lacorata and Vulpiani, 2007)?
- Dispersion relations connect the system's response at all forcing frequencies. This sounds like a good way of conceptualizing climate change (on all time scales)
- Let's perform experiments on "reasonable" systems


## References

- R. Kubo: Statistical-mechanical theory of irreversible processes. I, J. Phys. Soc. Jpn. 12 (1957), 570-586
- D. Ruelle: Nonequilibrium statistical mechanics near equilibrium: computing higher order terms. Nonlinearity 11 (1998), 5-18
- F. Bassani and S. Scandolo: Dispersion relations and sum rules in nonlinear optics, Phys. Rev. B 44 (1991), 8446-8453
- V. Lucarini, J.J. Saarinen, K.-E. Peiponen, E. Vartiainen: Kramers-Kronig Relations in Optical Materials Research, Springer, Heidelberg, 2005
- V. Lucarini: Response Theory for Equilibrium and NonEquilibrium Statistical Mechanics: Causality and Generalized Kramers-Kronig Relations, J. Stat. Phys. 131 (2008), 543-558
- V. Lucarini: Evidence of dispersion relations for the nonlinear response of the Lorenz 63 system, J. Stat. Phys. 134 (2009), 381-400
- V. Lucarini: Break-up of linear response theory for finite-size perturbations, in preparation (2010)

