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Vietivation

The analysis ofi how systems respond to external
perturbations to their steady state constitutes
one ofi the crucial subjects of investigation in
physics and mathematics

I particular, we are concerned with the
response ol chaotic systems:

= How do their statistical properties change when
(small) time dependent perturbations are applied?

= Is it possible to develop a perturbation theory?

Can we use the unforced fluctuations of the
system for deducing its properties when
perturbations are applied (FDT)?

Can we find tools for decodifying a large class of
dynamical systems?
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Background

* Inrguasi-equilivrium statistical mechanics, the
Kubo theory (‘50s) allows for an accurate
treatment of perturbations to the canonical
equilibrium state

« When considering general dynamical systems

(e.g. forced and dissipative), the situation is
muchiworse — FD relation does not apply

* Becent advances due mostly to Ruelle (late
90s) have lead to the idea that for SRB
systems it Is possible to define a perturbative
theory of the response to small perturbations
to the vector field. We follow this direction...




Perturbations to NESS Systems




AXIom A systems
« Axiom A dynamical systems are very special
= Include Anosov: flows: (hyperbolic, struct. stable, dense)
= Non-wandering| set is hyperbolic & periodic points are dense
= SBB invariant measure: time averages converge Lebesgue
a.e. to the ensemble averages for measurable observables
« For these systems all statistical properties are well-defined
« Often, when we perform numerical simulations, we
more or less implicitly set ourselves in these
hypotheses

« INot generic systems, but, following the chaotic hypothesis
by Gallavotti and Cohen (1995, 1996), systems with many
d.o.f. can be treated as if they were Axiom A systems when
Macroscopic averages are considered.

= [hese are good physical models!!!




SRB measure

« The invariant measure of the unperturibed system Is
not albsolutely continuous w.r.t. Lebesgue; It is so
only along the unstable (and neutral) manifold,
whereas it Is singular in the stable directions (effect
ofi the contraction!)

= |Locally, “Cantor set times a smooth manifold”.

Therefore, it is mathematically very different from
the smooth measure of the canonical ensemble, the
common framework for equilibrium (or quasi-
equiliorium in the Kubo sense) thermodynamics.

« But...




Ruelle Besponse heory
« It ther Axiom| A flow! IS perturbed as: ERSIEERaE]

* We:can express the expectation value of an
observable @ as:

« where the n”* order perturbation can be
expressed as:

(D) = / / . / doydes . de, Gy o el — aplelt —aq) el — ),
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Ruelle 1998




his Is a perturoative theory...

* with a causal Green function:

« EXxpectation value ofi an operator evaluated over the
Invariant measure pg.x(dx) of the unperturbed flow!

I(r)A(zx) = Alx(r))

Projection on the Unperturbed evolution operator
perturbation flow

* Conventional Kubo theory is a special case L. 2008
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Linear Systems

« Let us consider a general linear system whose
input /(1) and output O(1) are connected by the
following linear relationship:

oo

O(t) = j a(t—t)I(t)dt

—0Q

« By applying Fourier Transform to both members

We obtain:
O(w)=a(w)l(w)

* |Is there a connection between the properties
of a(r) and those of a(w)?




tchmarsch TTheorem

Theorem 1. (Titchmarsch)
The three statements 1., 2., and 3. are mathematically equivalent:

L. a(f} =0ift <0 aml alt) & 2
2. alw)=Flal(t ] cL?if we R and if

alw) = l!lm] alw +iw'),
—
then a(w + 1w’} is(holomorphic)if &' = 0.
3. Hilbert transforms |39 Tommect the real and imaginary part of a(w) as
follows:

La.;"




Kramers-Kronig relations

« Every causalllinear model has to obey this constraint;

* The in-phase and out-of-phase responses of a causal
system are connected by Kramers-Kronig relations:

= IF we have measurements of the real (imaginary) part of the
susceptibility, we can derive via K-K the best estimate of the
other consistently with the principle of causality

With: FRGOEVRE)

Kramers, 1926; Kronig1,1 1927




Other results

Theorem 2. (superconvergence)

If Nussenzweig, 1972

where

. f{z)is continuously differentiable,

i a

2. flz)=0 [{;r In ;rf]-l],

then for y 5 r the following asvmptotic expansion holds

By applying this theorem to the K-K, and considering
the asymptotic behaviour, we obtain the sum rules




Nonlinear susceptipilities

« [t my Input has one or more
monochromatic components, the n order
response will be nonzero for all the sums
ofi n-combinations of the input frequencies.

« Example: input has a monochromatic
component at w=xw,

* Linear response at w=w,
« Second order response at w=+2w, w=0
* Third orader response at w=*3w,; w=xw,

* Can we write KK relations for the
corresponding susceptibilities?




Scandelors TTheorem

Speciiic classes of nonlinear susceptibilities obey KK;

Basically, in the case of monochromatic input, only the
nth order susceptibility responsible for the nth order
harmonic generation process obeys KK

Linear response: — KK rels. apply

3"d order HG:

Kerr susceptibility RCEEd — KK rels. don’t apply
« KK don't apply for nonlinear correction to linear

— KK rels. apply

This Is a formal, model-independent result (developed

for OptiCS) Scandolo and Bassani, 1991
L. et al 2005 14




Dispersion Relations for NESS

systems




Asympiotic Behavior
|t G(t) ~° for t—>0, we have that:

= because the real part and the imaginary part
of the susceptibility have opposite parity.




Theretore:

* Kramers Kronig relations:

!
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mdicating the integer part of z) if 74+ n =2+ - 1.

* This, plus the ensuing sum rules, is the end of

the story
* But, let's see an application... L. 2008, 2009




LLorenz 63 system
i=0(y-x)

Yy=rx—y—XxZ
z=xy—bz
« With the classical values ¢ =10;r = 28;b6 =8/3

« Actually, in principle this is a bad model:

= Not Axiom -A

= Not Unitormly Hyperbolic
« Singular hyperbolic (Bonatti et al., 2005)

« We add the perturbation flow:
0
e(r)X = [x-28 cos(&)'t)}
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Linear Response

. Background (noise) :

<Z((0) —Idtf exp[—ia)t]:

Nt =
. Perturbed signals:

1T t . _L N P
<Z(w)>g’w' _?_(‘;dlfg,w'(z)exp[_lwt]_ NTZ E,0 <

j=1
Our signal:

5<Z(w)>ga) P <Z(a))>ga) ) §<Z(w)>0

Reich 2002
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Attention!!
« As opposed to the quasi-equilibriumi case,

the background flow has a component with
freguency w — due to noise [but with random
phase], since the system has naturally a
continuous spectrum.

* S0, In order to detect the signal, we need to
distinguish It from noise.

= Long Integrations (the peaks become more
pronounced

= Ensemble of simulations in order to average out
the phase of the background signal
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Linear Susceptibility
« Definition: z." (@) = lim = i(z(w)), ,

E—0 E




Asymptotic behavior
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Second Harmonic Susceptibility

« Signal:  #z2w)), , =(zQw)), , —z2w)),

« Definition: 1. Qw; o, 0))—181318 §(zQw)), ,

« Tihe limit is far from being trivial ...

* An old tale of solid state physicists:
Miller's rule: 2.” Qa; o, @) = 1" 20) 1" (0) 1" (v)

Bassani and Scandolo 1995
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Real Part of the susceptibility.
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—Re[xP(2w)] — Re[x'P2uw)]xxo ——~Re[x(20)xx,
10 15 0 5 10 15 0 5 1 |




Imaginany Part of the susceptibility

—Im[xP(2w)] —Im[xD2w)xxo ===Im[x?(2w)|xx 1 Im[x®(2w)] sz
10 15 0 5 10 15 0 5 10 15 0 5 10 15
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Asymptotic behavior

e o)
« Since: 17 Qw,0,0) =——"+o(a")
®




Sum Rules - a
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Sum Rules - b
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[Finite-size e-perturbations

Integration path

* |L.arge values of epsilon, regions where
motion Is periodic (purple) = theory K.O. «




Windows of periodicity..
Using finite size e-perturibations we may encounter
WoP for some w; (usually resonances of the system)

It Axiom A, the extent of WoP. should vanish as
perturbation strength —0

The values of susceptibility y (w)) are “wrong”
= We are out of the validity of the Ruelle expansion, SRB
measure Is not smoothly deformed
KK relations do not work properly anymore

We can nevertheless cure these points

= We use KK of the “measured” real part evaluated at point w;
as 1irst guess ofr the imaginary part of the “correct” value

= We do the same for imaginary part — real part
= After just one Iteration the agreement is excellent
= Analytic continuation of (a well defined) y? Multistability?

paper on that (not using Lorenz 63!).




Conclusions

We have extended the Ruelle response theory and
have clarified its relationship with the Kubo approach

= We have defined a new: theory of linear and nonlinear
dispersion relations for chaotic systems. The theory Is based
on the principle of causality — and that's all.

= I a model does not obey K-K, it Is not a good model
We have proved its precision and applicability in a

specific (and problematic) low-dimensional case

... but what 1ffwe add stochastic perturbations? Will
the FD relation be again in place (Lacorata and
Vulpiani, 2007)?

Dispersion relations connect the system’s response at
all forcing frequencies. This sounds like a good way of
conceptualizing climate change (on all time scales)

Let’s perform experiments on “reasonable” systems
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