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1. Motivation

Starting from the Navier-Stokes-Equation, the analysis of turbulence is a hard numerical
and mathematical task.

Using a Dynamical Systems approach, e.g. a Coupled Map Lattice (CML), it is possible
to understand basic features of turbulence. Our special interest lies in the
understanding of the scaling of lifetimes of turbulent puffs with the system parameters.

2. The Model
Our CML is given by the evolution equation

z(t+1,n) = ag(z(t,n — 1)) + f(z(t,n))
with periodic boundary conditions.
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The control parameters are the height h, the coupling strength o and the
shift 0 (will be fixed to 0=0.1 throughout).

3. Trajectories

The initial condition is given by a finite perturbation at the first site. By iterating the
system, this perturbations travels through the lattice and eventually decays after a
certain lifetime, which can be interpreted as a turbulent puff.

Timeline CML: 6=0.1 , =0.8 , h=2.1 , xIni=1.17
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One trajectory for given initial perturbation xIni=1.17 with a lifetime of ~3300. The colour indicates the value of each site. This
trajectory plays the role of a turbulent puff for the dynamical system.

4. Lifetimes

The lifetime for a fixed set of parameters can be computed by following trajectories of
many initial conditions and calculating the exponential decay rate from the chaotic
region. For the uncoupled lattice, the tent map f(x) has an average lifetime
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Scaling of Average Lifetime with h

For zero coupling, the lifetime of
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Lifetime plot: 6 = 0.1
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Phase space of the CML, where the colour represents the increase
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The scaling of the average lifetime with height for fixed coupling.
(N=30000 initial conditions per data point). The inset shows a
magnification of the transition region.

We summarize the h and o dependence of
the lifetime in the false color plot to the left.
The complex shape of the isolines mimics
the complex parameter dependence of
lifetimes, which is commonly observed in
models of turbulent pipe flow [2].

5. Lyapunov vectors

Timeline CML: 8=0.1, a=0.8 , h=2.1 , xIni=1.3
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Forward LLV: 8=0.1 , 0=0.8 , h=2.1 , xIni=1.3
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Backward LLV: 8=0.1 , a=0.8, h=2.1 , xIni=1.3
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Trajectory and the corresponding largest normalised Lyapunov vectors

The susceptibility to perturbations of a
trajectory of the CML can be infered
from the linearized dynamics M. The
growth of perturbations is governed by
its singular values, i.e. it is dominated
by the largest eigenvalue of (M* M).
We wonder in what respect the
corresponding eigenvectors of (M* M)
and (M M*) characterize the most
unstable directions of the forward and
backwards dynamics, respectively.

6. Conclusion and Outlook

As shown above, the lifetime of the CML stro

ngly depends on hand o. The

behaviour is well understood in the uncoupled case, and we presently work on a
theory for a #0. We also wish to explore the correspondence of the parameter

dependence of our model system to features
Re and perturbation amplitues, and the inte
stability in flows.

of real flows, like the dependence on
rplay of convective and absolute
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