Lyapunov Modes in Extended Dynamical Systems

Günter Radons

with Hong-liu Yang, Kazumasa A. Takeuchi, Francesco Ginelli, Hugues Chaté

Theoretical Physics I - Complex Systems and Nonlinear Dynamics

Max-Planck-Institut für Physik komplexer Systeme, Dresden, Germany
International Workshop on
Exploring Complex Dynamics in High-Dimensional Chaotic Systems:
From Weather Forecasting to Oceanic Flows
25-29 January 2010

Lyapunov Modes:

- Generalization of (phonon) normal modes to chaotic systems
- Linearized motion in neighborhood of chaotic trajectory
- Hydrodynamic Lyapunov Modes (HLM): Slow, long wave-length behavior
- Objects of Hamiltonian nonlinear dynamics fundamental to (non-equilibrium) statistical physics?
- This talk: Extended dissipative systems, existence of finite number of physical, entangled modes

2 Types of Lyapunov Vectors:

- Orthogonal Lyapunov Vectors (OLV):

Studied in many extended systems (since 2000: Hard spheres, Lennard-Jones fluids, WCA fluids, Coupled map lattices, PDEs (KS equation), Dynamic XY model, FPU models, Posch, Morriss, Yang, G.R., ...)

- Covariant Lyapunov Vectors (CLV): Numerically accessible since 2007*
*PRL 99,130601 (2007) Ginelli et al.

Dynamics in tangent space: OLV

OLV = Orthogonal Lyapunov vectors $\delta x^{(\alpha)}(t)$: dynamics of orthonormal frame $\delta x^{(\alpha)}(t), \alpha=1, \ldots, 2 \mathrm{dN}$, from repeated Gram-Schmidt-reorthogonalization or QR decomposition

Property: k-dimensional parallel-epipedes align asymptotically with the space spanned by the k first Lyapunov vectors and its volume growth rate is $\lambda^{(1)}+\lambda^{(2)}+\ldots+\lambda^{(\mathrm{K})}$

Dynamics in tangent space: CLV

Mather decomposition: CLV

CLV $=$ Covariant Lyapunov vectors $\mathbf{e}^{(\alpha)}(\mathbf{x})$:

Decomposition of fundamental matrix (Mather spectrum):
$D \Phi^{(t)}[x]=\Sigma_{\alpha} \mathbf{e}^{(\alpha)}\left(\Phi^{(t)}[x]\right) \Gamma^{(\alpha)}(\mathbf{x}, \mathrm{t}) \mathrm{f}^{(\alpha)}(\mathrm{x})^{\boldsymbol{\top}}$
stretching factor $\Gamma^{(\alpha)}(\mathbf{x}, \mathrm{t})$
$\operatorname{Lim}_{t \rightarrow \infty} 1 / \mathrm{t} \log \left(\Gamma^{(\alpha)}(\mathbf{x}, \mathrm{t})\right)=\lambda^{(\alpha)}(\mathbf{x}) \quad \alpha$-th Lyapunov exponent
$e^{(\alpha)}(x)$ span Oseledec subspaces
$f^{(\alpha)}(x)$ adjoint basis
Biorthogonal sets: $f^{(\alpha)}(x)^{\top} e^{(\beta)}(x)=\delta_{\alpha \beta}$ and $\sum_{\alpha} e^{(\alpha)}(x) f^{(\alpha)}(x)^{\top}=1$

CLV, inertial manifolds, effective degrees of freedom of dissipative extended systems*:

Central result:
Lyapunov modes split into 2 groups:

1. infinitely many modes with included angles bounded away from zero, associated Lyapunov exponents negative (decaying perturbations, trivial modes)
2. finite number of modes with repeatedly vanishing included angles, associated Lyapunov exponents positive and negative (non-decaying perturbations, physical modes), "surface" of inertial manifold (IM)
*H. Yang, K.A. Takeuchi, F. Ginelli, H. Chaté, G.R., PRL 102, 074102 (2009)

Kuramoto-Sivashinsky (KS) Equation

$$
\partial_{t} u+\partial_{x}^{2} u+\partial_{x}^{4} u+u \partial_{x} u=0
$$

$L=133.12$
dynamics of solution $u(x, t)$

CLVs for KS system:

Static structure factor $\mathbf{S}^{(\mathbf{j})}(\boldsymbol{k})$ of CLVs

Distributions of included angles of CLVs

$$
\rho(\theta) \sim \exp (- \text { const. } / \theta)
$$

Finite probability of
included angles near-zero

Matrix of minimum included angles of CLVs

Schematic picture:

\rightarrow trivial, decaying modes (infinitely many)
\rightarrow physical, entangled modes (e.g. $\mathbf{N}=41$)

Extensivity of effective degrees of freedom:

Dependence of Lyapunov spectrum on system length L:

\# effective DOF, physical modes

Domination of Oseledec Splitting (DOS)

j-th finite time Lyapunov exponent:
$\lambda_{\tau}^{(j)}(x)=1 / \tau \log \left(\Gamma^{(j)}(x, \tau)\right)$
DOS: for $\mathrm{j}<\mathrm{i}$ there exists τ_{0} s.t. for $\tau>\tau_{0}$
$\lambda_{\tau}^{(j)}(x(t))>\lambda_{\tau}{ }^{(i)}(x(t))$ for all t
i.e. for $\tau>\tau_{0}$ finite time Lyapunov exponents always in "correct" order:

DOS:

t

DOS violation:

Measuring how often DOS is violated ($\mathrm{j}<\mathrm{i}$):

$\lambda_{\tau}^{(i)}(t)-\lambda_{\tau}^{(j)}(t)<0 \quad$ for all $t \rightarrow$ DOS
$\lambda_{\tau}^{(i)}(t)-\lambda_{\tau}^{(j)}(t)>0 \quad$ for some $t \rightarrow$ DOS violation
fraction of DOS violation: $v_{\tau}^{(\mathrm{d}, \mathrm{i})}=\left\langle\theta\left(\lambda_{\tau}^{(i)}(\mathrm{t})-\lambda_{\tau}^{(\mathrm{j})}(\mathrm{t})\right)>\right.$
<...> = time average, $\theta()=$. Heaviside step function
DOS violation DOS

$$
\tau=0.2
$$

How general are these findings?

Complex Ginzburg - Landau (CGL) Equation
$\partial_{t} W=W-(1+i \beta)|W|^{2} W+(1+i \alpha) \partial_{x}^{2} W$
$W(x, t)$ complex field in 1d space
Standard model of space-time chaos

Parameters:

$$
\alpha=-2.0, \beta=3.0, L=64 .
$$

Regime of amplitude turbulence

Lyapunov spectrum:

τ-dependence of fraction of DOS violation (CGLE):

1. CLVs provide a method to distinguish between physically relevant and irrelevant modes in tangent space of dissipative extended systems
2. relevant modes:

- entangled
- stable and unstable directions
- finite time Lyapunov exponents strongly fluctuating (DOS violated)
- trace inertial manifold \rightarrow finite number of degrees of freedom
- extensive

3. irrelevant modes:

- hyperbolically isolated (DOS fulfilled)
- purely decaying
- infinitely many

