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1. Problem statement

Consider a differential equation

ẋ = f(x), x ∈ Rn,

for which we have some (but not precise) prior knowledge about

its initial state x(0) and for which we can collect observations

y(tj) ≈ Hx(tj), y ∈ Rk, H ∈ Rk×n,

k < n, at discrete times tj > 0, j = 1, . . . , J, subject to some

measurement errors.

We wish to find a solution x(t), t ∈ [0, tJ], that makes opti-

mal use of the available information in terms of initial data and

observations.



2. Kalman Filter

Propagation step: Between observations propagate the mean
and the covariance under the differential equation, i.e. prior to
each observation, we have a most likely state xf(tj) and a co-
variance matrix Pf(tj) and we make the simplifying (often highly
questionable) assumption that

x(tj,x0) ∼ N(xf(tj),Pf(tj)).

Kalman analysis step: Feed in the observations y(tj) to obtain
an improved most likely state xa(tj) and a covariance matrix
Pa(tj). We continue with a propagation step using the analyzed
states

x(tj;x0) ∼ N(xa(tj),Pa(tj)).



3 Ensemble propagation and ensemble Kalman filter

We now consider a collection

X(t) = [x1(t) |x2(t) | · · · |xm(t)] ∈ Rn×m

of m independent solutions of the differential equation

ẋ = f(x).

From this matrix we extract the time-dependent ensemble

mean: x̄ = m−1 ∑
i

xi ∈ Rn,

deviations: Y = [x1 − x̄ |x2 − x̄ | · · · |xm − x̄] ∈ Rn×m,

covariance: P =
1

m− 1
YYT ∈ Rn×n.



The ensemble Kalman filter of Evensen (1996), combines en-

semble propagation with the classical Kalman analysis step, i.e.,

at tj there is a discontinuous change in X(t), i.e.

Xf := X(tj − ε) → X(tj + ε) = Xa,

where Xa is the ensemble generated from the assimilated ensem-

ble mean and deviation matrix:

Xa := xae
T + Ya, e = [1,1, . . . ,1]T ∈ Rm.

How to formulate the Kalman analysis step in terms of the en-

semble deviations Y from the mean? ==> deterministic and

stochastic formulations.



Kalman square root filters rely on a presentation/approximation
of a covariance matrix P ∈ Rn×n in terms of the n×m ensemble
deviations matrix Y, i.e.

P =
1

m− 1
YYT .

The Kalman analysis becomes

Ya = YfTr

or equivalently

Ya = TlYf .

The matrices Tr ∈ Rm×m and Tl ∈ Rn×n are given in terms of
square roots of symmetric matrices involving P, R, and H.

See book by Evensen for details on the available methods and
their history.



4. Continuous update formulation

The Kalman analysis step can be formulated in terms of an

gradient flow ODE (Bergemann/Reich, 2009)

dxi
ds

= −P∇xiV(X), s ∈ [0,1],

in the ensemble members xi, i = 1, . . . ,m, with the ensemble

induced covariance matrix P, potential

V(X) =
m

2

S(x̄) +
1

m

m∑
i=1

S(xi)

 ,

and observation cost function

S(x) =
1

2
(h(x)− y)T R−1 (h(x)− y) .



Each observation yj = y(tj) gives rise to an associated potential

Vj(X(tj)). The forward operator can also be non-linear, i.e.,

y = h(x).

The complete assimilation system can now be formulated con-

cisely as

dxi
dt

= f(xi)−
J∑

j=1

δ(t− tj)P∇xiVj(X),

i = 1, . . . ,m, where δ(·) denotes the Dirac delta function.



5. A couple of extensions

The discontinuous effect of the filtering step can be mollified by

dxi
dt

= f(xi)−
J∑

j=1

δε(t− tj)P∇xiVj(X),

where δε(·) denotes an approximation such as

δε(t) =
1

ε
ψ(t/ε)

and ψ(s) is, e.g., the standard hat function (B-spline). The

mollified EnKF gives rise to a sophisticated form of nudging

(Anthes, 1974) and might be particularly beneficial for multi-

scale assimilation since it involves temporal smoothing.



An ensemble Kalman filter step with perturbed observations can

be interpreted as a stochastic ODE

dxi
ds

= −P

[
∇xiS(xi) +∇xih(xi)R

−1/2dW(s)

ds

]
,

where W(s) is standard k-dimensional Brownian motion.

There is a continuous embedding of both approaches using

dxi
ds

= −
1

2
P

[
(2− α)∇xiS(xi) + αm∇xiS(x) +

2max{0, (1− α)}∇xih(xi)R
−1/2dW(s)

ds

]
,

for α ∈ [0,1] (α = 0: perturbed observations, α = 1: square root

filter). We may also consider α ∈ (1,2), which implies a form of

ensemble inflation.



6. Localization

The empirical covariance matrix P contains spurious long-distance

correlations due to under-sampling (m � n). This problem has

led to the idea of localization, i.e., Pf in the Kalman analysis

step is replaced by

Pf → C ◦Pf ,

where C is a “local” (in some distance) covariance matrix and

◦ denotes the Schur product of two matrices C,A ∈ Rn×k, i.e.

(C ◦A)i,j = (C)i,j (A)i,j.

While it is straightforward to apply localization to the update

of the ensemble mean, localized updates of the deviation matrix

Yf → Ya are the subject of ongoing research.



Based on our continuous update formulation, we can implement

localization easily.

For example, we take the (linearized) ODE update equation

dxi
ds

= −Pf∇xiV(X)

with Pf constant and temper/localize it to

dxi
ds

= −
(
C ◦Pf

)
∇xiV(X).

This is a linear, constant coefficient ODE in the ensemble mem-

bers xi(s).

See Bergemann and Reich, 2009, for details.



7. Numerical results for a barotropic fluid model

We use a 1.5 layer reduced-gravity quasi-geostrophic model with
double-gyre wind forcing and biharmonic friction:

qt = −ψx − εJ(ψ, q)−A∆3ψ+ 2π sin(2πy),

where q = ∆ψ − Fψ, J(ψ, q) = ψxqy − ψyqx. See Sakov & Oke,
Tellus A, 2008, for details.

The number of degrees of freedom (phase space) after spatial
discretization is n = 127× 127 = 16129, the number of observ-
ables at each tj is k = 300, and the size of the ensemble is
m = 25. The variance of the observation error is 4, i.e., R = 4I.
We also use

Cij,i′j′ = exp
(
−(i− i′)2/r20 − (j − j′)2/r20

)
for grid points xij and xi′j′; r0 the localization radius.



Observations are obtained from a reference numerical trajectory
with added noise of variance R, i.e., we treat our numerical model
as “perfect”. Simulations are run over 4000/5000 time-steps
with data assimilated every fourth/fifth time-step (∆tobs = 5).

We compute the standard deviation (STD) of the difference
between the “true” (unperturbed) trajectory and the ensemble
mean at each observation point ti. Roughly speaking the filter
yields “skill” if the STD is less than 2 on average.

We study the behavior of the localized filter for different values of
the localization radius r0. Some experiments also use ensemble
inflation

Y(ti) → δY(ti), δ > 1

after each assimilation step.



A typical results at final time:
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8. Numerical results from the Lorenz 96 model

The standard implementation of the Lorenz-96 model has state
vector x = (x1, . . . , xn)

T with n = 40 and its time evolution is
given by the equation

ẋj = (xj+1 − xj−2)xj−1 − xj + 8

with periodic boundary conditions.

We observer every second grid point, i.e., k = 20 and every 0.05
units of time (≈ 6 hours real time) with measurement variance
R = I.

The model is chaotic with 13 positive Lyapunov exponents. One
would expect that the necessary ensemble size m should be larger
than the number of positive Lyapunov exponents. But this is not
the case if localization is used! We show results for m = 10.



Impact of localization on 40 x 40 covariance matrix. We indicate

all entries that are above a certain threshold.
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Final fields with and without localization (ensemble size m = 10):
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Comparison with other standard ensemble Kalman filter imple-

mentations.
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We now look at slighly modified assimilation setting. We still

take observations in time increments of ∆tobs. But instead

of assimilating them directly, we assimilate only in intervals of

∆tass = 3∆tobs by batching the closest observation together into

a single Kalman filter step.

We consider ∆tass = 0.1,0.075,0.05,0.025. We compare the re-

sults from batched assimilation (Experiments A) to simulations

with all observations used in a standard Kalman fashion (Experi-

ment C) and to simulations using only observations at tobs = tass

(Experiment B).
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9. Numerical results from a slow-fast Lorenz 96 model

We consider two dynamic variables in an idealized slow-fast Lorenz

96 model

ẋj = (1− δ)(xj−1xj+1 − xj−2xj−1)− xj + 8 +

δ
(
xj−1hj+1 − xj−2hj−1

)
,

ε2ḧj =
1

4

[
hj+1 − 2hj + hj−1

]
− hj + xj

with ε = 0.0025, δ = 0.1, j = 1, . . . ,40.

We note the ”geostrophic”-type balance relation

hj −
1

4

[
hj+1 − 2hj + hj−1

]
= xj

and the wave dynamics is undamped in h.



We only (partially) observe {xj} is it was done for the standard

Lorenz-96 model in the previous epxeriments.

Ensemble members are initialized such that the ”geostrophic”

balance relation holds at initial time.

We use ∆tobs = 0.05 and ∆t = ∆tobs/40.

We compare impulse like assimilation with a mollified implemen-

tation using hat functions spread out over [tj − ∆tobs/2, tj +

∆tobs/2].



RMS errors in x and h separately optimized over the ensemble

inflation factor as a function of localization radius and generation

of unbalanced motion:
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10. Conclusion

• Ensemble Kalman filters are now being implemented operationally. How-
ever, observations are batched into 6 or 12 hour cycles. In my opinion,
observation should be inputed as they arrive.

• Problems arise for small ensemble sizes due to underestimation of vari-
ances and spurious covariances.

• Ensemble inflation and localization are common approaches to overcome
these limitations.

• These techniques can be implemented efficiently and robustly within the
ODE Kalman formulations.

• Localization and inflation are problematic for multi-scale problems and
are subject of ongoing research. Mollification might provide an interesting
solution ansatz.

• The assumption of Gaussian distributed solutions in the Kalman analysis
step is questionable. EnKF with perturbed observations might be easier
to extend (in the sense of mollified DA/nudging) to multi-modal behavior
since no definition of a mean is required.
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