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American Heritage Dictionary
» exX-treme:

3. Extending far beyond the norm
4. Of the greatest severity, drastic




AIMS

» What | mean by extreme?
» Why is it extreme? Clues to prediction.

» Is it predictable? Why?
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What | mean by extreme?

Gare Montparnasse, 22 October 1895

Different o Al'!' '.
definitions: S ﬁ\
» Maxima/minima [ & -

» Magnitude
» Rarity
» Severity

“Man can believe the impossible,
but man can never believe the

improbable.” - Oscar Wilde
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What is extreme weather?

] -' p?

» Magnitude exceeding thresholds
(far beyond the norm)
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What is extreme weather?

» Rarity (far beyond normal frequency)

Probability of Significant Tornado In U.S. {(Smoothed/Markoy)
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What is extreme weather?

» Rarity (far beyond normal frequency)
Tornadoes in Europe?

2008: 304 reports
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What is extreme weather?

» I’'ll use the “4. of the greatest severity, drastic”

definition of extreme:

- SPC: Tornadoes, Large Hail and Strong winds
- ESWD: SPCs + Heavy Rain




Why is it extreme?
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Why is it extreme (severe,drastic)?
Systems with high energy density:

» Tornadoes: 104 kWh in a very small volume [104 m3]
(Hurricanes: 109 kWh in 107°m?3)

» Strong Wind: 104 J/m?3
» Large hail: 7102 J/m?
» Heavy Rain

(N110)
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Why is it rare (far below frequent)?

» ExXtreme events occur:

convec| = ~ nces

» Useful model © ' lingredients
xar + Low LCL
'y + PW

profile of T/H

> Tornadoes: C
- Heavy rain: Cx
> Large Hail: C

kRN,

Extreme weather is rare because overlap of all ingredients is rare
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Why is it rare (far below frequent)?

Extreme weather is rare because overlap of all ingredients is rare
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Why is it rare (far below frequent)?

Extreme weather is rare because overlap of all ingredients is rare
Days per Year with Favorable Severe Parameters
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Triggering mechanism?
T H. E. Brooks




Is it predictable?
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“Predictable?? Don’t even know

how to define predictability in a

useful way for severe weather!”
H. E. Brooks




Is it predictable?

The Watch/Warning Funnel Concept

Thunderstorm, Fire Weather,
Severe Weather OUTLOOKS

Check plan of action

Make sure shelter is ready DEtailed Mesoscale
'y
o DISCUSSIONS SPC
< Products
SVR/TOR
Monitor weather conditions M
Stay tuned to TV/radio K
Local NWS

Products (WFO)

Take shelterl — S

D. Imy



Is it predictable?

SEVERE REPORTS
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Is it predictable?

» Atmospheric convection (at least our models of it)
IS:
> highly non-linear
- chaotic (highly sensitive to environment)
» Crucial aspects for valuable forecasts:
> Initiation (where and when)
- Evolution (where and when)
- Type or organization (how intense)
> Intensity (how intense)

... depend on small scale structures not observed
by regular observing systems (e.g. Stensrud and
Frisch1994).




4th October 2007

Limited predictability
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Limited predictability: 4th October 2007
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Error growth

» Regarding error growth and scales (Lorenz
1993):

1. Small errors in coarse structures double in ~ 2-3
days. As errors become larger the growth rate
subsides

2. Small errors in fine structure grow much
faster, doubling in hours

3. Errors in fine structure produce errors in the
coarse structure (!!'l)

4. Averaged and accumulated quantities might be
more predictable than the systems responsible for
them.




Is it predictable?

» NOAA/NWS target for tornado lead-time
prediction:

- 2004: 13 minutes for 2012
- 2008: 30 minutes for 2025
- 2010: “Warn of Forecast” project




How is it predicted?

» Few minutes: Nowcasting + Emergency
management protocols

» Hours and days: Numerical forecasts




Numerical forecast

Best Raw
guess forecast
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Numerical forecast

Best Raw
guess forecast
T

P




Numerical forecast

Best
guess forecast

Forecast error

Short-range
forec_ast k 4
, Fit of analysis

to "true” state

State of the Atmosphere

1 1 1 1 1 1 1 1 Ll : >
analysis  analysis analysis analysis analysis analysis analysis analysis analysis analysis
time 1 time 2 time 3 time 4 time § time 6 time 7 time 8 time 9 time 10

= "True" state of atmosphere for the model, given its resolution and physics
As close to "true” state as observation density and observation error allow
= Model forecast

' Small correction to short-term forecast The COM ET prog ram




Numerical forecast

Best Raw
guess forecast




Numerical forecast

C O R R E CT I O N ) Domain 2: REAL-TIME MMS5 WEATHER FORECASTS - Mozilla Firefox

Archivo Edtar Yer I Mercadores Hemamientas Ayuda

e G- - & ) G D veplimetoecsss.ub.eséoniicz e
M OS y M u I t I I I n e a r A Comenzar con Firefox [y Ulimas notces | | Thesaurus.com
- h Eh 2006 3 UTC Fri, 24 Feb 2006
regression, BIAS o

Best
guess

Raw
forecast

POSTPROCESS

Color Field
i ) Height500  +] = Temperature 650 .
Contour Field Contour Field
removal,calibratio oo e caerel
=] Vector Field Vector Field
n, human filter = ot |
Sounding Sounding
—None— v/ ——None— v
Meteogram Meteogram

END-USER == o e
DEMANDS T

Acum Rainfall | Wind Speed 10m v

Ad apted Cortour Fleld Contour Field

forecasts, e

Sounding

Probabilistic =g
products

Vector Field

Wind 10m M

Sounding

—Naone— |
DOMAIN 2

(7.5 km resolution)

< H+00 H+03 H406 H409 H2 H+15 H+8 H+21 H+24 H427 H430 H433 H436 H439 H#2 HH5 Animate Change Domain




Numerical forecast. Errors

Best Raw
guess forecast

» Errors are present in each of the steps in the
forecasting system, coping with (both reducing and
accounting for) these errors is currently focus of
active research

» “Forecasts cannot be used to their best advantage
unless forecast uncertainty is quantified and

. expressed to users” (Winkler and Murphy,1979)
4

Smith (2002): “to sell any forecast as unequivocal is
to invite lawsuits”




Coping with errors

» The state of the atmosphere is described by a
probability density function that we ought to evolve in
time to get a forecast pdf:

P =f(p)

In phase space:

PDF
forecast

PDF
best guess




Ensemble methods

» The Fokker-Plank equation cannot be
solved yet and the current approximation
is to explore the pdf of plausible
atmospheric states taking an ensemble of
samples and evolving each one
independently

7
pdf(A) 4
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= =
PDF — .

est guess T
Probabilistic
K \\\‘ AR \\\\\_\ fO recast



Coping with errors

best guess

» The idea is clear (even clever) but...

» Hands on:

- VERY expensive HR forecasts (limited members)
> S0, optimization of resources (bussiness) is crucial

Probabilistic
forecast

How to sample the subspace of
forecast uncertainties?

If we want to use ensembles of deterministic runs:

— Perturbing the observations
— Perturbing the IC
— Perturbing the model



Example: experimental ensemble

WRF-ARW3 080324/0300%027 1km REFD

L J
WRF-ARWZ 080324/0300%¥027 1km REFD SSEF-CN 080324/0300¥027 1lkm REFD 080324/0303 UTC BREF

Jack Kain. SPC/NSSL Spring Program 2008




What’s available? Ensemble methods

» Synoptic/large mesoscale:
- Montecarlo (mid- 1900’s).
- EnKF: Multiple assimilation cycles with
perturbed observations, modulated by
previous ensemble performance statistics.

- Most unstable nonlinear modes:

- Singular Vectors: Tangent linear approximation
(ECMWE)

- Bred vectors: Future MU modes are

estimated from past nonlinear MU modes
(NCEP)




What’s available? Ensemble methods

Mesoscale (~ 5km res):
Larger IC uncertainties: d.f. 1 # obs |
Shorter linear regime (~h)
Presence of BC (mitigating diversity)
Most unstable nonlinear modes:

Bred vectors (SREF): best nonlinear estimate of growing
modes.
A
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The breeding method

Bred vectors:

bv = -£ = — with «o;

Example of a typical

rescaling function (SREF):

f(bv)

f(bv) = cnt.

T Bred Vector @ lev = 17 for
arithmetic2-pos 200109170000

1 |
ﬁZ(Tp ~T)2 (fixed RMS)

e 75 for T at ~850hPF
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The breeding method

» Bred vectors characteristics:

- The spread of an ensemble depends on the growth rate
of its members

- The growth rate of IC perturbations depends on their
scale and amplitude (besides location)

- The scale of bv can only be controlled through the
rescaling period (fixed by analysis times)

Rescaling period minutes months

II—

convective global




The breeding method

» From theory of finite fluctuations on dynamical
systems:

“The scale of bvs can also be controlled by using a
different rescaling function:

. N _
f(bv) = 1—[(Tp - T.) (fixed geometric mean)
which is shown to apply for 1D toy models.”

The analysis characterize perturbations with:

In(p): Amplitude _ y
(Controlled) In(p) = In(8x) = In l_[ Sy N

w?: Scale w? = (]n(S}’) — ]n(p))z (Provided)




The breeding method
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The breeding method

Is the logarithmic rescaling any different

from the RMS based for realistic weather
models (MM5 or WRF)?




The breeding method

Is logarithmic rescaling different than RMS based?
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The breeding method
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New (proposed) generation method

Is w? (scale) really uncontrollable
(given by the model dynamics only)?




New generation method

The scale of the perturbation can be
modified with:

In fact:

Any single perturbation 6x (not only bvs) can be

used to generate a new set of perturbations with
rescribed amplitude AND SCALE.




In(p) = -1.3
w?=1.8

In(p) = -3.5
w?=0.1
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New generation method

» A full ensemble can be generated from (even) a single

bred cycle:
7~ f% ﬁ ﬁ f%
© 1=12n0O
- W, In(p;) = w,, In(p,) w;, In(p;) — w,, In(p;) — w,, In(p,)
- W,, In(p,) — w,, In(p,) w,, In(p,) == w,, In(p,) — w,, In(p,)
w3, In(p3) w3, In(p3) w3, In(p3) w3, In(p3) w3, In(p3)
— Wy, In(p,) — wy,, In(p,) Wy, IN(p,) F— Wy, In(p,) F— wy,, In(p,)
— W5, In(ps) — Wyg, |n(05) Ws, |n(05) — Wyg, |n(05) — Wyg, In(ps)
— Wg, IN(pg) = Wy, In(pg) We, IN(Pg) = W, IN(pg) I W, IN(pg)

— Wy, In(py) Wy, IN(pp) = wy, In(py) = wy, In(py)



New generation method

» Comparing this “scaled bv” with standard bv:

- Test over 30 cycles (15 days) with convective activity
over the Western Mediterranean

- Low mesoscale and convective scale perturbations are
generated here
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‘A la carte’ perturbations

» One step further consists in adding diversity to
the ensemble by mixing bred cycles to build the
set of IC

7 6xj1/ﬁj - -
ICP, = E y; sbv, =E Y, " ; where j determines BC and sbv
j j j
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» IN(Py)
» In(p3)
» In(py)
» In(ps)

, In(pg)




‘A la carte’ perturbations

Using various bred cycles, a number of different IC
perturbations can be computed:

Y 6-xj1/ﬁj . .
ICP, = Eyj sbv =E Y ” ; where J determines BC and sbv
j j j




‘A la carte’ perturbations

Currently defining global rescaling
coefficients (Y)

ICP examples:
EN \

6
L




SUMMARY

» What is extreme weather?
- Not strictly defined. Practical definitions used.

» Why is it extreme?
> Ingredients coincide rarely

» Is it predictable? Why?

- Not within useful lead-times. Very sensitive to poorly
observed scales

» How is extreme weather forecast nowadays?
o Ensemble methods Not yet solutions for extreme (HR).
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Thanks!

Zo——

"Wictor.homar@uib.es



Definition of predictability

» Predictability: the guality of being predictable
“The predictability of <something> ...”

This quality refers to a certain forecast entity, and by defining one,
we are implicitly setting a space-temporal scale, which sets its
redictability limit.
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Definition of predictability

» Predictability time: time at which two
solutions obtained from slightly differing
initial states are as different from each other
as two random states of the system (Lorenz

1963).

Climatological
variability

,,,,,

Predictability time depends, besides growth, on how “differing” the initial states

are. The attribution of indistinguishable states might be simply assigned by
technical limitations.




Definition of predictability

» Predictability time: time at which initial

conditions error is doubled [Smagorinsky
(1963), Mintz(1964), Leith (1965)]

Predictability time not really informative about predictive capability of the




(practical) Definition of predictability

» Predictability time: time at which two
solutions compatible with “best guess
uncertainty” become intolerably different

200
—— Error in current forecast
——=— Expected error for perfect model
—— Expected error for near-perfect data
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0 2 20 how “tolerant” the end-user is
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(Dyn Sys) Definition of predictability

» Predictability time: time at which the
system asymptotically evolves into its
(strange) attractor

(b) Linear phase: a hyper

(a) Initial volume: a small ellipsoid
hypersphere
Error growth in a dynamical O
system:
0 5,e’"
t - O e (d) Asymptotic evolution to a
(c) Nonlinear phase: folding needs strange attractor of zero volume
to take place in order for the and fractal structure. All
solution to stay within the bounds predictability is lost

Predictability time:

t*~LlnA | | .
oo, a

(May not be appropriate for high-
dimensional finite systems) (Kainay 2003)




(Dyn Sys) Definition of predictability

» Predictability time: time at which a system
trajectory is attracted to the neighborhood
of a statistically stationary solution

Let us consider some ensemble (distribution) of initial states Po and its

evolution P (i t) .

If the system has the invariant (mixing) measure

P()=GO(R)—=—F,, v©)=GOW,).

9

where Pst is the stationary distribution of points in the system phase
space (e.g climatology).

When P(T) = P, all information about the initial distribution Fy s

as the predictability limit (Dymnikov, Izvestiya, 2004).



Conventions

» “Kinds of predictability”: attribute the
predictability limits to sources of errors
(infinitesimal)

> Predictability of st kind: limited by the errors in
the estimate of the state of the system (initial and
boundary conditions)

> Predictability of 2nd kind: limited by the errors and
deficiencies in the model (errors per se, resolution,
discrete nature, parameterizations)




