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Assimilation of observations, as it is known in meteorology and oceanography,
originated from the need of defining initial conditions (ICs) for numerical weather
prediction. Difficulties progressively arose

 Need for defining ICs with appropriate spatial scales ⇒ ‘structure functions‘ (now incorporated in
background error covariance matrices)

 Need for defining ICs in approximate geostrophic balance ⇒ ‘initialization’ (now also incorporated in
background error covariance matrices)

 Realization that useful information was present in recent forecast ⇒ use of a background (word
assimilation was coined in 1967-68)

 Use of satellite observations, which are

- distributed continuously in time
- indirect ⇒ need for some form of ‘inversion’
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December 2007: Satellite data
volumes used: around 18 millions

per day
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European Centre for Medium-range Weather Forecasts
(ECMWF, Reading, UK)

Horizontal spherical harmonics triangular truncation T799
(horizontal resolution ≈ 28 kilometres)

91 levels on the vertical (average resolution 400 m)

Dimension of state vector n ≈ 2.3 108

Timestep  =  12 minutes
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Purpose of assimilation : reconstruct as accurately as possible the state of
the atmospheric or oceanic flow, using all available appropriate
information. The latter essentially consists of

 The observations proper, which vary in nature, resolution and
accuracy, and are distributed more or less regularly in space and time.

 The physical laws governing the evolution of the flow, available in
practice in the form of a discretized, and necessarily approximate,
numerical model.

 ‘Asymptotic’ properties of the flow, such as, e. g., geostrophic balance of middle latitudes.
Although they basically are necessary consequences of the physical laws which govern the
flow, these properties can usefully be explicitly introduced in the assimilation process.
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Assimilation is one of many ‘inverse problems’ encountered
in many fields of science and technology

• solid Earth geophysics

• plasma physics

• ‘nondestructive’ probing

• navigation (spacecraft, aircraft, ….)

• …

Solution most often (if not always) based on bayesian, or
probabilistic, estimation. ‘Equations’ are fundamentally the
same.
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Difficulties specific to assimilation of meteorological observations :

- Very large numerical dimensions (n ≈ 106-108 parameters to be
estimated, p ≈ 1-2.107 observations per 24-hour period). Difficulty
aggravated in Numerical Weather Prediction by the need for the forecast
to be ready in time.

- Non-trivial, actually chaotic, underlying dynamics
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Both observations and ‘model’ are affected with some uncertainty ⇒ uncertainty on the
estimate.

For some reason, uncertainty is conveniently described by probability distributions
(don’t know too well why, but it works).

Assimilation is a problem in bayesian estimation.

Determine the conditional probability distribution for the state of the system,
knowing everything we know (unambiguously defined if a prior probability distribution is defined; see
Tarantola, 2005).
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Bayesian estimation is however impossible in its general theoretical form
in meteorological or oceanographical practice because

• It is impossible to explicitly describe a probability distribution in a space
with dimension even as low as n ≈ 103, not to speak of the dimension  n ≈
106-8 of present Numerical Weather Prediction models.

• Probability distribution of errors on data very poorly known (model errors
in particular).
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One has to restrict oneself to a much more modest goal. Two
approaches exist at present

 Obtain some ‘central’ estimate of the conditional probability
distribution (expectation, mode, …), plus some estimate of the
corresponding spread (standard deviations and a number of
correlations).

 Produce an ensemble of estimates which are meant to sample the
conditional probability distribution (dimension N ≈ O(10-100)).
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Proportion of resources devoted to assimilation in
Numerical Weather Prediction has steadily increased over
time.

At ECMWF, as much computing time devoted now to 24-
hour assimilation as to 10-day high resolution forecast.
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A large part of ‘real life’ assimilation algorithms still based on heuristic extension to nonlinear
situations of statistical linear estimation

Data in the form

z = Γx + ζ

Known data vector z belongs to data space D, dimD = m,
Unknown state  vector belongs to state space S, dimS = n

Γ known (mxn)-matrix, ζ unknown ‘error’

Look for estimated state vector xa of the form

xa = α + Az

subject to

 invariance in change of origin in state space     ⇒  AΓ = Im
 quadratic estimation error E[(xa

i - x i)2]  minimum for any component xi.
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Solution

xa = (Γ T S-1Γ)-1 Γ T S-1 [z −  µ]

Pa ≡ E[(xa - x ) (xa - x )T] = (Γ T S-1Γ)-1

where  µ ≡ Ε(ζ)
  S ≡ E{[ζ −  µ] [ζ −  µ]T}

Best Linear Unbiased Estimator (BLUE) of x from z.

Requires a priori explicit knowledge of Ε(ζ) and  E{[ζ − Ε(ζ)] [ζ - Ε(ζ)]T}

Unambiguously defined iff rankΓ = n. Determinacy condition. Requires m ≥ n.



15

In case ζ is gaussian, ζ  ∼ N [µ, S], BLUE achieves bayesian estimation

in the sense that P(x | z) = N [xa, Pa]

Perturbed data vector

zp = z + ζp ,  ζp  ∼ N [0, S]

and associated BLUE

xa
p = (Γ T S-1Γ)-1 Γ T S-1 [zp −  µ]

xa
p is distributed according to conditional pdf N [xa, Pa].

This defines a ready recipe for obtaining a sample of the conditional pdf. Perturb data
vector N times, and independently, and compute corresponding BLUEs.
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Variational form.

BLUE xa minimizes following scalar objective function, defined on state space S

J(ξ)  ≡  (1/2) [Γξ - (z-µ)]T S-1 [Γξ - (z-µ)]

BLUE is invariant in any invertible linear change of coordinates, either in state or
data space.
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If determinacy condition is verified, it is always possible to decompose
data into

 A ‘background’ estimate (e. g. forecast from the past), belonging to state
space, with dimension n

xb  =  x  + ζb ; E(ζb) = 0   ;  E(ζbζbT) ≡ Pb

 An additional set of data (e. g. observations), belonging to observation space,
with dimension m – n = p

y  =  Hx + ε   ;  E(ε) = 0   ;  E(εεT) ≡ R

with    E(εζbT) = 0
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Then
xa = xb + Pb

 HT
 [HPbHT + R]-1 (y - Hxb)

d ≡ y - Hxb is innovation vector.

   Pa = Pb
 - Pb

 HT
 [HPbHT 

 + R]-1 HPb
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Variational form

ξ ∈  S  → 

	

     J(ξ)  =  (1/2) (xb - ξ)T [Pb]-1 (xb - ξ) +  (1/2) (y - Hξ)T R-1 (y - Hξ)

  =         Jb      +      Jo
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 Observation vector at time k

yk = Hkxk + εk k = 0, …, K
E(εk) = 0   ;  E(εkεj

T) ≡ Rk δkj

 Evolution equation

xk+1 = Mkxk + ηk k = 0, …, K-1
E(ηk) = 0   ;  E(ηkηj

T) ≡ Qk δkj

E(ηkεj
T) = 0

 Background estimate at time 0

xb
0 = x0 + ζb

0

E(ζb
0) = 0   ;  E(ζb

0 ζb
0

T) ≡ Pb
0

 E(ζb
0εk

T) = 0    ;  E(ζb
0ηk

T) = 0
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Sequential assimilation assumes the form of Kalman Filter

Background xb
k and associated error covariance matrix Pb

k known

 Analysis step

 xa
k = xb

k + Pb
k Hk

T
 [HkPb

kHk
T 

 + Rk]-1 (yk - Hkxb
k)

 Pa
k = Pb

k - Pb
k Hk

T
 [HkPb

kHk
T 

 + Rk]-1 HkPb
k

 Forecast step

xb
k+1 =  Mk xa

k
Pb

k+1 = Mk Pa
k Mk

T + Qk
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In  Ensemble Kalman Filter (EnKF), instead of evolving a covariance matrix,
one evolves an ensemble of state vectors, from which the background error
covariance matrix is determined.

Only exception so far, in real life assimilation, to linear (and gaussian)
approach. Analysis step remains linear (and gaussian).

Bayesian character of EnKF ?

- If everything is linear and gaussian, distribution of ensemble produced by
EnKF tends to underlying bayesian pdf when ensemble dimension tends to
infinity.

- If not, distribution of ensemble tends to a limit which is not the bayesian
distribution (F. Le Gland)
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Variational assimilation leads to the following weak constraint objective
function

(ξ0, ξ1, ..., ξK) → 

	

     

J(ξ0, ξ1, ..., ξK)
=  (1/2) (xb

0 - ξ0)T [Pb
0]-1 (xb

0 - ξ0)

+  (1/2) Σk=0, …, K (yk - Hkξk)T Rk
-1 (yk - Hkξk)

+  (1/2) Σk=0, …, K-1 (ξk+1- Mkξk)T Qk
-1 (ξk+1- Mkξk)
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In present operational practice (ECMWF, Météo-France, UK Meteorogical
Office,  Canadian Meteorological Centre , …), model error is ignored. Strong
constraint variational assimilation

	

 ξ0  →  J(ξ0)  =  (1/2) (xb
0 - ξ0)T [Pb

0]-1 (xb
0 - ξ0)

           +  (1/2) Σk=0, …, K (yk - Hkξk)T Rk
-1 (yk - Hkξk)

 

subject to

 ξk+1 = Mkξk  , k = 0, …, K-1
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Variational assimilation has been extended to non Gaussian probability
distributions (lognormal distributions), the unknown being the mode of the
conditional distribution (M. Zupanski, Fletcher).

Bayesian character of variational assimilation ?

- If everything is linear and gaussian, recipe mentioned above

Perturb data (background, observations and model) according to their error
probability distributions, do variational assimilation, and repeat process

Provides bayesian sample of system orbits

- If not, very little can be said at present
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How to take temporally correlated errors into account (model or observation
errors) ? Not possible in standard Kalman Filter, which always updates latest
estimate at a given time.

Solution. Augment state vector to temporal dimension over time interval over
which correlations are significant.

This is what variational assimilation does. Solutions are being developed for
Kalman Filter.
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Exact bayesian estimation ?

Particle filters

Predicted ensemble at time t : {xb
n, n = 1, …, N },  each element with its own weight

(probability) P(xb
n)

Observation vector at same time : y = Hx + ε

Bayes’ formula

P(xb
n|y) ∼ P(y|xb

n) P(xb
n)

Defines updating of weights
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Bayes’ formula

P(xb
n|y) ∼ P(y|xb

n) P(xb
n)

Defines updating of weights; particles are not modified. Asymptotically converges to bayesian
pdf. Very easy to implement.

Observed fact. For large state dimension, ensemble tends to collapse.
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C. Snyder,
http://www.cawcr.gov.au/staff/pxs/wmoda5/Oral/Snyder.pdf
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Problem originates in the ‘curse of dimensionality’ Large dimension
pdf’s are very diffuse, so that very few particles (if any) are present
in areas where conditional probability  (‘likelihood’) P(y|x) is large.

Bengtsson et al. (2008) and Snyder et al. (2008) evaluate that stability
of filter requires the size of ensembles to increase exponentially with
space dimension.
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Alternative possibilities (review in van Leeuwen, 2009, Mon. Wea. Rev., 4089-4114)

Resampling. Define new ensemble.

Simplest way. Draw new ensemble according to probability distribution defined by
the updated weights. Give same weight to all particles. Particles are not
modified, but particles with low weights are likely to be eliminated, while
particles with large weights are likely to be drawn repeatedly. For multiple
particles, add noise, either from the start, or in the form of ‘model noise’ in
ensuing temporal integration.

Random character of the sampling introduces noise. Alternatives exist, such as
residual sampling (Lui and Chen, 1998, van Leeuwen, 2003). Updated weights
wn are multiplied by ensemble dimension N. Then p copies of each particle n are
taken, where p is the integer part of Nwn. Remaining particles, if needed, are
taken randomly from the resulting distribution.
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Importance Sampling.

Use a proposal density that is closer to the new observations than the
density defined by the predicted particles (for instance the density
defined by EnKF, after the latter has used the new observations).
Independence between observations is then lost in the
computation of likelihood P(y|x).

In particular, Guided Sequential Importance Sampling (van
Leeuwen, 2002). Idea : use observations performed at time k to
resample ensemble at some timestep anterior to k.
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van Leeuwen, 2003, Mon. Wea. Rev., 131, 2071-2084
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Exact bayesian estimation (continuation)

Acceptation-rejection

Bayes’ formula

f(x) ≡ P(x | y) = P(y | x) P(x) / P(y)

defines probability density function for x.

Construct sample of that pdf as follows.

Draw randomly couple (ξ, ψ) ∈ S x [0,supf].
Keep ξ if ψ < f(ξ). ξ is then distributed according to f(x).
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Miller, Carter and Blue, 1999, Tellus, 51A, 167-194
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Acceptation-rejection

Seems costly.

Requires capability of permanently interpolating probability distribution defined by
finite sample to whole state space.
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Those alternative possibilities are beneficial in that they reduce
the occurrence of ensemble collapse. General conclusion from
experiments performed in geophysical applications is that
particle filters can produce better results than, say, Ensemble
Kalman Filter. But that is obtained at the price of using
ensemble dimensions that are prohibitive (100-200).

Particle filters are now a ‘hot’ research topic, studied in many
places (C. Snyder, P. J. van Leeuwen, S. Nakano, C. Baehr, …)

A particular question, as always with sequential estimation, is the
possibility of taking temporal error dependence into account.
This can in principle be done by augmenting the state vector to
the time dimension.
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If there is uncertainty on the state of the system, and dynamics of the system is
perfectly known, uncertainty on the state along stable modes decreases over time,
while uncertainty along unstable modes increases (Pires et al., Tellus, 1996).

Stable (unstable) modes : perturbations to the basic state that decrease (increase)
over time.
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Consequence : 4D-Var assimilation, which carries information both forward and backward in
time, performed over time interval [t0, t1] over uniformly distributed noisy data. If assimilating
model is perfect, estimation error is concentrated in stable modes at time t0, and in unstable
modes at time t1. Error is smallest somewhere within interval [t0, t1].

Similar result holds true for Kalman filter (or more generally any form of sequential asimilation),
in which estimation error is concentrated in unstable modes at any time.



42Pires et al., Tellus, 1996 ; Lorenz system (1963)



Pires et al., Tellus, 1996 ; Lorenz system (1963)



44Trevisan et al., 2010, in press
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Consequence : it might be useful, at least in terms of cost efficiency, to concentrate
assimilation in modes that have been unstable in the recent past, where uncertainty
is likely to be largest.

Also, presence of residual noise in stable modes can be damageable for analysis and
subsequent forecast.

Assimilation in the Unstable Subspace (AUS) (Carrassi et al., 2007, 2008, for the case
of 3D-Var)
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Four-dimensional variational assimilation in the unstable subspace
(4DVar-AUS)

Trevisan et al., 2010, Four-dimensional variational assimilation in the unstable
subspace and the optimal subspace dimension, Q. J. R. Meteorol. Soc., in
press
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4D-Var-AUS

Algorithmic implementation

Define N perturbations to the current state, and evolve them according to the tangent
linear model, with periodic reorthonormalization in order to avoid collapse onto the
dominant Lyapunov vector (same algorithm as for computation of Lyapunov
exponents).

Cycle successive 4D-Var‘s, restricting at each cycle the modification to be made on the
current state to the space spanned by the N perturbations emanating from the
previous cycle (if N is the dimension of state space, that is identical with standard
4D-Var).
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Experiments performed on the Lorenz (1996) model

with value F = 8, which gives rise to chaos.

Three values of I have been used, namely I = 40, 60, 80, which correspond to
respectively N+ = 13, 19 and 26 positive Lyapunov exponents.

In all three cases, the largest Lyapunov exponent corresponds to a doubling time
of about 2 days (with 1 ‘day’ = 1/5 model time unit).

Identical twin experiments (perfect model)
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‘Observing system’ defined as in Fertig et al. (Tellus, 2007):

At each observation time, one observation every four grid points
(observation points shifted by one grid point at each observation time).

Observation frequency : 1.5 hour

Random gaussian observation errors with expectation 0 and standard
deviation σ0 = 0.2 (‘climatological’ standard deviation 5.1).

Sequences of variational assimilations have been cycled over windows
with length τ  = 1, … , 5 days. Results are averaged over 5000 successive
windows.
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No explicit background term (i. e., with error covariance matrix) in objective function :
information from past lies in the background to be updated, and in the N perturbations
which define the subspace in which updating is to be made.

Best performance for N slightly above number  N+ of positive Lyapunov exponents.



Different curves are almost identical on all three panels. Relative improvement obtained by decreasing
subspace dimension N to its optimal value is largest for smaller window length τ.
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Experiments have been performed in which an explicit background term was present,
the associated error covariance matrix having been obtained as the average of a
sequence of full 4D-Var’s.

The estimates are systematically improved, and more for full 4D-Var than for 4D-Var-
AUS. But they remain qualitatively similar, with best performance for 4D-Var-AUS
with N slightly above N+. 
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Minimum of objective function cannot be made smaller by reducing control space.
Numerical tests show that minimum of objective function is smaller (by a few
percent) for full 4D-Var than for 4D-Var-AUS. Full 4D-Var is closer to the noisy
observations, but farther away from the truth. And tests also show that full 4D-Var
performs best when observations are perfect (no noise).

Results show that, if all degrees of freedom that are available to the model are used,
the minimization process introduces components along the stable modes of the
system, in which no error is present, in order to ensure a closer fit to the
observations. This degrades the closeness of the fit to reality. The optimal choice is
to restrict the assimilation to the unstable modes.



55

Can have major practical algorithmic implications.

Questions.

- Degree of generality of results ?

- Impact of model errors ?
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Thanks !


