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Abstract
We consider the application of the Extended
Kalman Filter to a chaotic system with stable,
neutral and unstable manifolds of dimension
given by the numbers N+, N0 and N− of posi-
tive, null and negative Lyapunov exponents re-
spectively. We show that the rank of the EKF
covariance matrix, initially equal to the total
number of degrees of freedom of the system,
asymptotically reduces to the dimension of the
unstable and neutral subspace. In a reduced
form of the algorithm (Extended Kalman Fil-
ter with Assimilation in the Unstable Subspace,
EKF-AUS), the assimilation is confined to the
unstable and neutral directions of the tangent
space. When the observations are sufficiently
dense and accurate that filter divergence does
not occur, the EKF and its reduced form EKF-
AUS converge to the same solution.
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where M is the nonlinear evolution operator
and M is the Jacobian of M.
Kk is the gain matrix

Kk = P
f
kH

T
(

HP
f
kH

T + R
)

−1

,

H is the Jacobian of H, the measurement oper-
ator:

THE ALGORITHM (EKF and EKF-AUS)
We perform the assimilation in a manifold of dimen-
sion m. When m is equal to the number n of degrees of
freedom of the system, the algorithm solves the stan-
dard EKF equations. When m = N+ + N0 the re-
duced form, with Assimilation in the Unstable Sub-
space (EKF-AUS) is obtained.
We set Q = 0 (no model error). The analysis error
covariance matrix is expressed as the product of two
Cholesky factors
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Forecast step
The tangent linear operator M acts on the columns of
Xa (the perturbations)
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The forecast perturbations are orthonormalized
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The forecast error covariance matrix is cast in the form
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where U is orthogonal and diagonalizes Γ
′

a in Γa =
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thus we have Pa = EaΓaE
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It can be shown that, asymptotically, xa

i and x
f
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the same subspace as the leading (N++N0) Lyapunov
vectors (estimated errors in the stable subspace decay
and only errors in the unstable and neutral subspace
survive the filtering process).

Model and observations
The Lorenz 96 model equations are:

ẋj = (xj+1 − xj−2)xj−1 − xj + F

with j = 1, ..., n. xj represent the values of a scalar meteorological quantity at n grid points on a periodic
longitudinal domain. The model has chaotic behavior for the value of the forcing, F = 8. For n = 40, 60, 80
the model presents 13, 19, 26 positive Lyapunov exponents and a null exponent. We perform the simulation in
a perfect model scenario (null model error). We evolve a true trajectory, xt

k and an analysis trajectory xa
k. The

observations are obtained from the true values with the equation:

y
0
k = H(xt

k) + σ0ηk,

with ηk a white Gaussian noise with zero mean and variance one. Every other grid point is observed with a
time interval of tk+1 − tk = 0.05 and the observation points are shifted by one at each observation time.

Results of the application of EKF and EKF-AUS
Varying the number, n, of degrees of freedom of
the model, systems with different stable and un-
stable subspace dimension are obtained.
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a) Average (over 1000 iterations) error ‖xt
k − xa

k‖/
√

n for
EKF (open) and EKF-AUS (full circles) as a function of the
observation error, σ0.
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b) Rank of Pa in the standard EKF. The Pa rank decays to
a value approximately equal to the dimension N+ + N0 of
the unstable and neutral subspace of the three systems. With
n = 40, 60, 80 degrees of freedom N+ + N0 = 14, 20, 27,
respectively.
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c) Asymptotic error covariance matrix for EKF and EKF-
AUS. Numerical values of Pa and of Γa eigenvalues: all
non-zero eigenvalues are practically identical.

Conclusions
• We have shown that the full EKF and its reduced form EKF-AUS lead to the same results;

average error (Fig. a) and Pa eigenvalues (Fig. c) are the same.

• The rank of Pa and Pf decays to N+ + N0 in the standard EKF calculation (Fig. b). Only
errors in the unstable and neutral subspace survive the filtering process.

• An implication of the present results is that, provided errors behave linearly, N+ + N0 is the
necessary and sufficient number of members needed to recover the full EKF results with an
Ensemble KF.

• In systems with N+ + N0 ≪ n the reduced EKF-AUS algorithm can significantly alleviate the
computational cost of the full EKF.
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