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Abstract. We address the problem of energy dispersion of radiation
pressure accelerated (RPA) ion beams emerging from a thin target. Two
different acceleration regimes, namely phase-stable acceleration and multistage
acceleration, are considered by means of analytical modeling and one-
dimensional particle-in-cell simulations. Our investigations offer a deeper
understanding of RPA and allow us to derive some guidelines for generating
monoenergetic ion beams.
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1. Introduction

Interaction of ultra-intense laser pulses with thin foils offers interesting possibilities to generate
energetic charged particles. The so-called radiation pressure acceleration (RPA) of ion bunches
has recently attracted much interest as it may provide an efficient way of generating intense
quasi-monoenergetic ion beams. In contrast to target normal sheath acceleration (TNSA) [1, 2],
where ions are accelerated from the target rear surface (the front surface being the one irradiated
by the laser pulse) in the electrostatic field built up by the laser-created hot electrons, RPA of
ion beams relies on efficient momentum transfer from laser photons to ions in a thin dense
target, which reflects the incident laser pulse. Therefore, RPA may provide a very efficient way
to accelerate quasi-neutral ion–electron bunches up to potentially relativistic velocities while
keeping the energy dispersion small.

The idea of accelerating (macroscopic) objects by laser radiation pressure was initially
discussed by Marx [3] as a possible path toward interstellar space travel. Its application
to efficient ion acceleration was first proposed in [4], where the authors show that, in
order to observe efficient RPA with linearly polarized light, ultra-high laser intensities
(IL � 10

23 W cm−2) are required. For lower intensities, indeed, strong laser-induced electron
heating makes target expansion the dominant acceleration mechanism. In 2005, Macchi et al [5]
demonstrated that using circularly polarized (CP) laser light strongly reduces electron heating,
thus allowing RPA to operate efficiently at lower intensities. After that, different teams
have discussed independently the possibility of creating quasi-monoenergetic ion beams by
irradiating a thin target with an intense CP laser pulse [6–9]. Many studies have followed, some
proposing and/or revisiting different acceleration models or discussing the optimal laser–target
parameters through one-dimensional (1D) and 2D particle-in-cell (PIC) simulations [10–13].
Multi-dimensional effects on the stability of the accelerated foil and their potential capability to
improve RPA have also been discussed [14–16]. Finally, the first experimental confirmation of
RPA was claimed recently [17].
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While the basic mechanisms of RPA are now well understood, the control of the energy
dispersion in RPA ion beams has not been fully addressed. This paper is intended to provide the
reader with guidelines on how to achieve this control. To do so, we first recall the basic modeling
of RPA of a thin foil and provide scaling laws concerning the maximum ion energy that can be
reached as a function of laser intensity or power (section 2). Beyond this simple (macroscopic)
modeling, we discuss the details of RPA of a thin foil as following from two complementary
processes. For the thinnest foils, electrons are piled up at the target rear side by the strong
radiation pressure. Ion acceleration then proceeds in the so-called phase-stable way [9], where
ions are continuously accelerated in the resulting charge-separation field. In contrast, thick
enough targets undergo multiple successive hole-boring stages so that ion acceleration occurs
as a discontinuous, multi-step process [6, 7]. In section 3, we propose some refined models
for both acceleration processes and extract the main requirements for controlling the resulting
ion energy dispersion. These analytical findings are compared to numerical PIC simulations in
section 4. Finally, we present our conclusions in section 5.

2. Basic modeling

In this paper, all quantities are normalized to laser- and electron-related units. Times and
distances are normalized to the incident laser frequency ωL and wave number kL = ωL/c,
respectively, and velocities are normalized to the light velocity c. Electric charges and masses
are normalized to the electron charge e and mass me, respectively. Densities are normalized
to the critical density at the considered laser wavelength λL = 2π/kL: nc = �0 me ω

2
L/e

2, where
�0 is the permittivity of free space. Electric fields are normalized to the Compton field EC =
me cωL/e. Furthermore, we consider a CP laser pulse and introduce the incident laser pulse
vector potential:

AL(t, x) =
aL(t)
√
2
[cos(t − x) ŷ + sin(t − x) ẑ], (1)

where ŷ and ẑ denote the unit vectors pointing in the two directions transverse to the laser
propagation direction x̂.

2.1. Macroscopic approach: the light-sail model

A straightforward and elegant way of deriving the energy ions gain during the acceleration of a
thin target by laser radiation pressure is to consider the accelerated layer as a quasi-neutral light
sail reflecting the incident laser pulse [4]. Acceleration then follows from momentum transfer
from the laser photons to the ions. Assuming that all ions in the target have the same velocity
v

(l)
i in the laboratory frame, the equation of motion for the target is obtained by equating the
photon momentum flux to the ion momentum flux, which follows from the target acceleration
(ni0 d0) dp

(l)
i /dt, where p(l)

i is the ion momentum in units of me c, ni0 is the initial target ion
density and d0 its thickness. For arbitrary target velocities, two effects—the reduction of the
photon flux on the target and the Doppler shift lowering of the photon momenta in the target
frame—must be taken into account. Considering total reflection of the laser pulse in the target
frame, one obtains

(ni0 d0)
d

dt
p(l)
i = a2L[t − xi(t)] γ

2
i (1−v

(l)
i )2, (2)
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where a2L(t) is the normalized laser intensity, xi(t) is the time-dependent position of the target

moving with the velocity v
(l)
i , and γi = (1− v

(l)2
i )−1/2 is the associated Lorentz factor. The

solution of equation (2) has been derived, e.g. in [8], for a laser pulse with an idealized step-like
temporal profile (a2L(t) = a20 for t > 0 and a2L(t) = 0 otherwise), with the maximum laser field
amplitude a0:

p(l)
i (t) = mi

�
sinhφ − (4 sinhφ)

−1
�
, (3)

where φ = (1/3) sinh−1(3 a20 t/(ni0 mi d0)+ 2) and mi is the ion mass.
At this point, we stress that, in the derivation of equation (2), (i) the electron momenta have

been neglected and (ii) the target is assumed to be thin enough to be accelerated as a whole,
quasi-neutral bunch, but thick enough to support the laser radiation pressure. Both assumptions
are discussed in more detail in section 3.

2.2. Scaling laws for the ion energy

Let us now derive some scaling laws for the ion energy Ei = (γi − 1)mi (in units of me c
2).

First, equation (3) can be simplified in the limit of non-relativistic ions (p(l)
i � 1), leading to

p(l)
i (t) ∼ a20 t/(ni0 d0) and ion energies:

Ei ∼
mi

2

�
a20 t

mi ni0 d0

�2

. (4)

This result suggests that the ion energy scales with the square of the laser intensity IL = a20 (in

units of c3 me nc/2) and more precisely with the square of the laser fluence φL =
� t

0
a2L(t) dt (in

units of c3 me nc/(2ωL)). However, this scaling applies only for sufficiently short laser pulses.
Indeed, if the laser pulse is long enough for the target to travel over a distance larger than the
laser Rayleigh length LR ∼ w2

L (wL is the transverse size of the laser focal spot), diffraction of
the laser pulse must be accounted for7. It sets in after a time t ∼

√
2mi ni0 d0 wL/a0, so that

the final ion energy is limited to Ei ∼ a20 w2
L/(ni0 d0). For a sufficiently long laser pulse, the ion

energy thus scales (only) linearly with the laser intensity. More precisely, one can introduce the
normalized laser power onto the target, PL ∼ a20 w2

L (in units of me nc c
3/(2 k2L)), and we obtain

that the final ion energy scales linearly with the laser power.
Considering characteristic diamond-like carbon (DLC) targets (mi = 12× 1836, ni0 = 60

at λL = 1µm) with thickness d0/λL = 10−2 ([18] and references therein) irradiated by a tightly
focused laser pulse (wL/λL = 5), we find that relativistic carbon ions may be obtained using a
100 TW (1 PW) laser with pulse duration ∼ 200 fs (∼ 20 fs). Hence, relativistic ion production
may be possible on already (or soon to be) available laser facilities.

Finally, equation (3) can also be simplified in the limit of ultrarelativistic ions p(l)
i � 1:

Ei ∼ p(l)
i ∼

mi

2

�
6 a20 t

mi ni0 d0

�1/3

. (5)

The ion energy thus increases as t1/3. This characteristic evolution was first reported in the
original paper by Esirkepov et al [4]. In the ultra-relativistic regime, v(l)

i ∼ 1, and diffraction

7 Our estimates of the effect of laser beam diffraction are quite rough as we aim at deriving simple scaling laws for

the ion energy. As discussed in [16], the target deformation during the acceleration process may actually prevent

the laser beam diffraction and thus allows for enhanced ion energies.
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Figure 1. Schematic picture of RPA once the balance between electrostatic and
radiation pressures is reached. (a) In the phase-stable regime (ξ ∼ 1): the target
rear side is continuously accelerated. (b) In the multistage regime (ξ � 1): the
laser acts as a piston and ion acceleration occurs sequentially.

sets in after a time t ∼ w2
L. The final ion energy then scales as the power 1/3 of both the laser

intensity and power. This is mainly because of photon red-shifting and the reduced photon flux
onto the target due to its relativistic recoil.

3. Two radiation pressure acceleration (RPA) regimes

A deeper insight into RPA of thin targets requires us to investigate more closely the structure of
the accelerated target. When exposed to an intense laser pulse, the target electrons are pushed
forward into the target by the laser ponderomotive force, thus forming a compressed electron
layer (CEL) at the laser front. The formation of this layer occurs in a very short time as it
involves only electron motion. Its characteristic position lc before ion motion sets in can be
easily derived from equating the electrostatic pressure (Z ni0 lc)

2/2 to the radiation pressure a20
on the CEL. Obviously, maintaining the target integrity requires lc to be smaller than the target
thickness d0. It is thus quite natural to introduce the normalized parameter ξ = Z ni0 d0/(

√
2 a0).

For ξ < 1, the radiation pressure is so strong that it cannot be balanced by the electrostatic
pressure inside the target. All electrons are expelled from the target, which then undergoes
Coulomb explosion. This regime of interaction has been studied in [20–22], where the authors
have considered its applications to both electron and ion acceleration. It is however not suitable
for efficient RPA of thin foils, which requires ξ � 1.

In what follows, we analyze two regimes of thin foil RPA for parameter values ξ ∼ 1
or ξ � 1.

3.1. Phase-stable acceleration of thin targets

In the regime where ξ ∼ 1, the radiation pressure is strong enough to push all electrons at the
target rear side. A large electrostatic field is built up in the whole target and ions are continuously
accelerated (see figure 1(a)) as they follow the compressed electron bunch. This regime that
was first discussed by Yan et al [9] was named phase-stable acceleration by analogy with
conventional radiofrequency linear accelerator techniques to keep particles in synchronization
with the accelerating field. It is also referred to as self-organized double-layer acceleration [11]
or coherent acceleration of ions by laser [19].

New Journal of Physics 13 (2011) 123003 (http://www.njp.org/)
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For the sake of simplicity, one assumes that the electron density in the CEL is constant and
homogeneous: nec ∼ Z ni0 d0/ le, where le < d0 is the CEL thickness. At this point, we stress that
simple considerations on the balance between electrostatic and radiation pressures do not allow
us to derive this thickness le. For ξ = 1, le would indeed shrink to 0, which is prevented by the
electron pressure that is not included in our model.

As ions initially located outside the CEL are accelerated in an electrostatic field, which
increases linearly in space, they are, a priori, not of interest for efficient generation of quasi-
monoenergetic ion bunches. We should thus focus our attention on the ions located in the CEL,
which undergo acceleration in the monotonically decreasing field:

Ex(t, x) = E0(t)
d(t) − x

le
, (6)

where d(t) is the position of the target rear side at time t, and the maximum electrostatic field
E0(t) can be derived from the equilibrium condition of the CEL (in the frame moving with the
target rear side):

1
2
(Z ni0 lc) E0(t) = a20 γ 2i (1−v

(l)
i )2, (7)

where v
(l)
i is the velocity (in the laboratory frame) of the CEL, i.e. of ions accelerated in a

phase-stable way, and γi = (1− v
(l)2
i )−1/2 is the associated Lorentz factor. From this, we obtain

E0(t) =
√
2 a0 γ 2i (1−v

(l)
i )2. (8)

Note that in this regime, where electrons are piled up at the rear side of the target, the
accelerating field E0(t) does not depend on the CEL thickness le. A similar feature was
discussed in [12].

The governing equation for the mean ion momentum can be easily derived by considering
that, in the phase-stable regime, ions are accelerated, on the average, by an electrostatic field
E0(t)/2. We obtain

d

dt
p(l)
i =

Z a0
√
2

γ 2i (1−v
(l)
i )2, (9)

which is nothing but equation (2) derived in the macroscopic model for ξ ∼ 1.
As for the ion motion around the mean velocity v

(l)
i , it can be described as in [9]. Denoting

χi(t) the position of an arbitrary ion in the CEL with respect to the center of the CEL and
considering that all ions move with a velocity close to the mean velocity v

(l)
i , we obtain

d2

dt2
χi = −

Z E0(t)

mi le γ
3
i

χi. (10)

Therefore, if both E0(t) and γi vary slowly on a time scale�−1, where�2 = Z E0(t)/(mi le γ
3
i ),

the ions in the CEL have a harmonic motion around the mean velocity. From this, one can
infer the dispersion in ion velocities of the accelerated bunch �vi ∼ le � in the frame moving
with the CEL. Correspondingly, the relative energy dispersion for non-relativistic ions
scales as

�Ei

Ei
∝

�
Z le a0

Ei

�1/2
. (11)

This scaling with E
−1/2
i ensures, with the small CEL thickness le � 1, the quasi-monoenergetic

feature of the accelerated ion beam. In the ultrarelativistic regime, one would obtain
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�Ei/Ei ∝ E
−5/2
i . However, and as will be shown in numerical simulations (section 4.2), the

reduction of radiation pressure in the target frame associated with its relativistic recoil does
not allow for this acceleration regime to be maintained at ultrarelativistic velocities. Instead,
acceleration will more and more evolve like the multistage process discussed in section 3.2.

Phase-stable acceleration of the thin target thus opens an interesting path toward the
creation of energetic quasi-monochromatic ion beams. Nevertheless, there is one restriction that
was not mentioned in the original paper by Yan et al [9] that we want to address now. In this
specific regime of laser–target interaction, the electron bunch is compressed at the target rear
side. A large energy can thus be stored in the electrostatic field. Once the laser pulse is turned
off, this energy is transferred back to the electrons, which start to quiver around the target, thus
inducing its adiabatic expansion and in turn widening the ion energy spectrum.

To estimate the importance of this effect, we derive the energy stored in the electrostatic
field (see also [12]). Neglecting the contribution of the CEL due to its small thickness and
considering that the electrostatic field varies linearly, Ex(x) = E0(t) x/d(t) for 0< x < d(t),
the energy stored in the electrostatic field reads

Ees(t) ∼

� d(t)

0

E2x(x)

2
dx =

a20
3

γ 4i

�
1−v

(l)
i

�4
d(t). (12)

For non-relativistic ion velocities this quantity simplifies to Ees(t) ∼ ni0 d0 Ei(t)/3, suggesting
that the energy stored in the electrostatic field is of the same order as the total ion kinetic
energy. For such ion velocities, one should therefore expect a broadening of the ion energy
distribution once the laser is turned off. For ultrarelativistic velocities however, Ees is found to
remain much smaller than the total kinetic ion energy, and the effect of adiabatic expansion on
energy dispersion is negligible.

These theoretical predictions are compared to numerical simulations in section 4.2.

3.2. Multistage RPA of thicker targets

For ξ � 1, the radiation pressure can only push electrons at a distance lc � d0 inside the target
so that the resulting charge separation field remains confined to a region much thinner than
the target itself (see figure 1(b)). As we will see, this field structure actually acts as a piston
reflecting ions as it propagates deeper into the target. Ion acceleration in this regime can then
be described as a multistage process [6, 7], where the target undergoes successive hole-boring
(HB) processes.

For the sake of clarity, we first present the multistage process in the case of non-relativistic
ion velocities. Then we generalize the procedure to the relativistic case.

3.2.1. Non-relativistic ion velocities. In a first stage, ion acceleration follows from the laser-
driven HB of the immobile target. The laser acts on the target ions as a piston, moving deeper
into the target with the velocity vp0 and reflecting an increasing number of ions [23, 24]. The
piston velocity can be derived easily by considering the balance of radiation and electrostatic
pressure in the frame comoving with the piston. If the laser field amplitude a0 and the target
density ni0 are constant, vp0 will not change in time. For non-relativistic ion velocities, we obtain
vp0 = a0/

√
2mi ni0. During this stage, the ion velocity in the laboratory frame ranges between

v
(l)
i = 0 (corresponding to ions having not been picked up by the laser piston) and v

(l)
i,1 = 2 vp0

(corresponding to ions that have been reflected once by the laser piston). Index 1 in the ion
velocity denotes the first acceleration stage. This first stage lasts up to the time τ0 = d0/vp0 when

New Journal of Physics 13 (2011) 123003 (http://www.njp.org/)



8

the piston reaches the initial position of the back of the target. Ideally, at the end of this stage,
all ions of the target have been accelerated to the velocity v

(l)
i,1 = 2 vp0 in the laboratory frame

and the whole target has been accelerated as a quasi-neutral bunch. At this point, we restrict
ourselves to thin targets with thickness d0 � vp0 tp (with tp being the laser pulse duration), a
necessary condition for the multistage process of RPA. Targets with larger thickness will only
undergo HB.

To describe the second acceleration stage, i.e. for times t > τ0, we consider that the whole
target is moving with the velocity v

(l)
t = v

(l)
i,1 = 2 vp0 in the laboratory frame. Then, in the frame

moving with the target, ion acceleration proceeds in a way similar to laser-driven HB. During
this stage, ion velocities range between 0 and 2 vp0 in the target frame, which transforms to

v
(l)
t = 2 vp0 and v

(l)
i,2 = v

(l)
t + 2 vp0 = 4 vp0 in the laboratory frame.

Then, if tp > 2 τ0, a third acceleration stage starts during which the ion velocity in the
laboratory frame ranges between 4 vp0 and 6 vp0. For a sufficiently long laser pulse, this

multistage process goes on so that at the j th stage, the ion velocity ranges between v
(l)
i, j−1 =

2 ( j − 1) vp0 and v
(l)
i, j = 2 j vp0. Correspondingly, the ion energy ranges between 2 ( j − 1)2 mi v

2
p0

and 2 j2 mi v
2
p0. Generation of quasi-monoenergetic ion bunches thus requires the acceleration

process to occur over many steps, i.e. over a time t � τ0. If this condition is satisfied, the ion
mean energy and energy dispersion at a time t ∼ j τ0 ( j � 1) read

Ei(t) = 2mi v
2
p0 (t/τ0)

2, (13)

�Ei(t) = (2 τ0/t) Ei(t). (14)

The first equation corresponds to the ion energy evolution expressed by equation (4), which
was obtained using the macroscopic model in section 2.1 in the limit of non-relativistic ion
velocities. The second relation gives information about the energy dispersion of the ion bunch.

3.2.2. Iterative procedure for relativistic ion velocities. To extend the multistage model to
higher ion velocities, relativistic effects such as the radiation pressure diminution on the target
and dilation of the characteristic stage duration due to the target relativistic recoil have to be
accounted for.

The initial stage of ion acceleration is once more similar to the laser-driven HB of the
immobile target. Accounting for relativistic effects, the piston velocity is vp = vp0/(1 + vp0).

During this stage, ion velocities thus range between 0 (not yet reflected ions) and v
(l)
i,1 =

2 vp/(1 + v2p) (reflected ions). Correspondingly, we obtain the minimum and maximum ion

energies during the first stage: Emini,1 = 0 and Emaxi,1 = (γi − 1)mi, where γi = (1− v
(l)2

i )−1/2. This
stage ends when the piston reaches the initial position of the target rear side, i.e. after a time
τ (l)
s = d0/vp. In contrast to the classical limit, however, ions do not reach exactly twice the piston
velocity. As a consequence, the target thickness and consequently the ion density have changed.
At the end of this first acceleration stage, we have d1 = v

(t)
i,max τ (t)

s − d0 and ni,1 = ni0 d0/d1.
Let us now consider the j th stage of the acceleration process ( j > 1). The target velocity

(in the laboratory frame) is the velocity that ions have reached at the former j − 1 stage:
v

(l)
t = v

(l)
i, j−1. In the frame moving with the target, the laser radiation pressure is therefore

reduced by the factor γ 2t (1−v
(l)
t )2 (where γt = (1− v

(l)2
t )−1/2). The piston velocity in the target

frame thus reads v(t)
p = v�

p/(1 + v�
p), where v�

p = vp0 (ni0/ni, j−1)
−1/2 γt (1−v

(l)
t ). It follows that

the reflected ions have a velocity v
(t)
i = 2 v(t)

p /(1 + v(t)2
p ) in the frame moving with the target,

New Journal of Physics 13 (2011) 123003 (http://www.njp.org/)
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Figure 2. Ion maximum and minimum energies predicted by the multistage
model (dashed curves) and comparison to predictions from the macroscopic
model (gray solid curves) for (a) vp0 = 0.01, (b) vp0 = 0.1, (c) vp0 = 1 and
(d) vp0 = 10.

which transforms in v
(l)
i, j = (v

(t)
i + v

(l)
t )/(1 + v

(t)
i v

(l)
t ) in the laboratory frame. The duration of the

stage in the target frame is easily computed as τ (t)
s = d j−1/v

(t)
p , while one has to account for

time dilation in the laboratory frame τ (l)
s = γt τ

(t)
s . As for the target thickness and density at the

end of the stage, they have to be recalculated in the target frame as d j = v
(t)
i τ (t)

s − d j−1 and
ni, j = ni0 d0/d j .

Following this procedure, we can compute the temporal evolution of the minimum and
maximum ion energies for arbitrary values of the parameters vp0 and d0. The comparison of this
multistage model with the macroscopic model of section 2.1 is given in figure 2 for several
values of vp0. Predictions from the multistage model match perfectly with the results from
section 2.1 for vp0 = 0.01, where the characteristic ion energy evolution ∝ (t/τ0)

2 is recovered
(figure 2(a)). For higher values of vp0 (figures 2(b)–(d)), good agreement is still found between
the two models. A small discrepancy can, however, be observed in the ion mean energy8, but
it remains small compared to the predicted energy dispersion. It must also be noted that the
characteristic duration of an acceleration stage, for relativistic ion velocities, can be strongly
dilated in the laboratory frame, which has an important effect on energy dispersion. These
analytical predictions are compared to numerical simulations in section 4.3.

4. Numerical simulations

Numerical simulations of RPA of thin targets have been performed using the PIC code
PICLS [27]. In order to make a direct comparison with our analytical model, only 1D in space

8 Our multistage model predicts a slightly higher ion energy than the macroscopic model. This is because, in our

multistage model, we have a step-like decrease of the radiation pressure onto the target, while radiation pressure is

continuously decreasing in the macroscopic model.
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Figure 3. Dependence of the ion mean energy on the normalized parameter
ξ (proportional to the target thickness) � 10 τL after the beginning of the
interaction. The carbon target has density Z ni0 = 150 and the laser field
amplitude is a0 = 10 (◦), a0 = 20 (�) and a0 = 40 (�). Red dashed lines
correspond to predictions from the macroscopic (light-sail) model (solutions of
equation (2)).

and 3D in velocity (1D3V) simulations are presented. This choice is also justified, as it has
been shown that a quasi-1D geometry is required to avoid strong electron heating and partial
transparency of the foil, which may prevent quasi-monoenergetic ion beam generation [7].
Our study thus provides us with necessary, albeit not sufficient, conditions for creating
monoenergetic ion beams.

In our simulations, a CP laser pulse is focused at normal incidence on a thin, fully ionized,
carbon target with density ni0 = 25 and Z = 6. The target is located at a distance 2 λL from the
left boundary of the simulation box (the laser propagates from left to right). Both the incident
laser field amplitude and the target thickness are varied to explore different regimes of RPA of
thin foils.

4.1. Optimal target thickness

Figure 3 shows the ion mean energy at an instant t � 10 τL after the beginning of the interaction
for ξ � 1. In the case ξ < 1, the simulations indeed confirm that all electrons are removed from
the target due to the strong radiation pressure, leading to the Coulomb explosion of the non-
neutralized ion layer. For ξ � 1, one observes that the ion mean energy increases as the target
thickness decreases: the lighter the target, the higher ion energy one can reach. Such a result
was already discussed in [10, 12] with the conclusion that the regime, ξ ∼ 1, is the optimum
case for high-energy ion generation.

4.2. Ion acceleration in the phase-stable regime

Let us have a more detailed look at ion acceleration in the phase-stable regime ξ ∼ 1.
Figure 4 presents the time-resolved energy spectra obtained in simulations for different

New Journal of Physics 13 (2011) 123003 (http://www.njp.org/)
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Figure 4. Phase-stable acceleration (ξ = 1). (a–d) Time-resolved ion energy
spectra. (e–h) Snapshot of the energy spectrum at the end of the laser–target
interaction. (i–l) Snapshot of the energy spectrum at the end of the simulation.
The laser field amplitude is (a, e, i) a0 = 10, (b, f, j) a0 = 20, (c, g, k) a0 = 40
and (d, h, l) a0 = 100. Red dashed lines show theoretical predictions from the
macroscopic model.

incident laser field amplitudes a0 = 10–100 and ξ ∼ 1 (the target thickness is adjusted for
each laser amplitude). Theoretical predictions for the ion mean energy from the macroscopic
model (section 2.1) are superimposed on to the numerical results. Rather good agreement
is found between theory and simulation. However, while for a0 = 100 the ion mean energy
evolves exactly as predicted by the macroscopic model, numerical simulations at lower field
amplitudes (a0 = 10–20) show higher ion energies than estimated analytically. The reason for
this discrepancy can be found in figure 5 and the corresponding movies, where details of the
temporal evolution of the target structure during the acceleration process are presented for
a0 = 10 and a0 = 100. For the lower laser field amplitude, a0 = 10, the CEL is not totally opaque
to the laser field, which is partly transmitted (the foil transmittance is here T � 20%). The
ponderomotive force on the target rear side is thus non-zero and some electrons can escape from
the target into the vacuum behind. This widens the electrostatic field distribution and increases
its average value at the target rear side, thus leading to the observed increase of ion energy. In
contrast, for a0 = 100, the target is partly transparent only during a short time at the beginning
of the interaction. Once the target has reached a relativistic velocity, the radiation pressure in
the target frame is lower and electrons remain confined in the target. On such long times, the
CEL does not actually stay at the target rear side and ion acceleration becomes more similar to
multistage acceleration.

Figure 4 also reveals the quasi-monoenergetic ion distribution during the acceleration
process. This is underlined in the different panels of figure 4 presenting the ion energy at the end
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Figure 5. Phase-stable acceleration (ξ = 1). Details of the target 10 τL after the
beginning of the interaction for (a, c, e) a0 = 10 and (b, d, f) a0 = 100. (a, b) The
laser field amplitude is shown in magenta, the electrostatic field in green and the
ion and electron densities in red and black, respectively. (c, d) Ion distribution
in phase space. (e, f) Electron distribution in phase space. See also movies of
the whole simulation corresponding to (a, c, e) and (b, d, f), available from
stacks.iop.org/NJP/13/123003/mmedia (movies 1 and 2).

of the interaction process (panels 4(e)–(h)), as well as in figure 6, which shows the relative ion
energy dispersion as a function of the ion mean energy for a0 = 10–100. Figure 6 also confirms

the characteristic dependence of the relative energy dispersion, which is proportional to E
−1/2
i

as predicted by equation (11). Equation (11) also predicts that �Ei/Ei should scale as
√
le a0,

and one could naively expect for a given ion mean energy that �Ei/Ei scales as the square root
of the laser field amplitude a0. Figure 6, however, shows that the dependence on a0 is stronger.
This is because the CEL thickness le actually increases with a0 for a fixed value of ξ ∝ d0/a0.

Let us now discuss the fraction fi of ions in the monoenergetic peak. A naive estimate
can be derived from the semi-microscopic model presented in section 3.1 by considering
that only ions initially located in the CEL participate in the phase-stable acceleration so that
fi ∼ 1− ξ−1 (see also [26]). This estimate would suggest that only a very small fraction
of the target ions participate in the acceleration process. Simulations, however, show quite
the contrary: fi ranges between 0.45 and 0.67 for a0 = 10–100. There are two reasons for
such a high number of accelerated ions. (i) While in the model presented in section 3.1 the
CEL thickness shrinks to 0 as ξ → 1, the electron pressure in the CEL actually increases
during the compression by the laser pulse and prevents its collapse. As a result, the CEL
thickness is much larger than expected in the model and so is the fraction of accelerated ions.
(ii) Furthermore, some ions initially located outside of the CEL can still be injected (after
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Figure 6. Phase-stable acceleration (ξ = 1). Relative energy dispersion during
the phase-stable acceleration as a function of the ion mean energy. For a0 = 10
(◦), a0 = 20 (�), a0 = 40 (�) and a0 = 100 (�).

some time) in the CEL and thereafter participate in the phase-stable acceleration. While the
creation of the CEL is almost instantaneous (because of electron relativistic velocities, it occurs
on a characteristic time ∼ d0/c � 1), ions react to the strong electrostatic field on a longer
time scale of the order of the inverse ion plasma frequency. A self-maintained structure made
of both the CEL and ions is formed and it is this structure which is accelerated in a phase-
stable way. The correct modeling of this accelerating structure is very challenging as it would
require one to describe self-consistently the ion and electron motions. While this has been done
for ion acceleration in the HB regime in [24] by developing a quasi-stationary model, this is
particularly difficult under current conditions as the quasi-stationary hypothesis does not hold.
What is also clearly highlighted in the two movies is that some ions, which are not initially
located inside the accelerating structure, can be injected into it after some time. Ions located
outside the CEL indeed ‘see’ a constant accelerating field and may actually catch up with the
CEL after some time. For nonrelativistic ions, one can easily estimate that only ions initially
located at a position xi0 > d0/2 can reach the CEL and their fraction fi cannot exceed 50%.
Accounting for relativistic effects allows for a larger fraction of reinjected ions (which increases
in time, according to simulations, up to 67% for a0 = 100). Similar features have been reported
by Eliasson et al [25] using the Vlasov–Maxwell simulations. Considering a thin foil with
dimensionless parameter ξ ∼ 1.8 (Z ni0 = 10, d0 = 0.2 λL and a0 = 5), the authors found that
between 75 and 80% of the ions are efficiently accelerated and that relativistic effects help in
increasing this fraction.

Finally, we want to point out that, once the laser is turned off, the energy stored in the
electrostatic field goes back to electrons, which start quivering around the accelerated ions, thus
driving its adiabatic expansion. If the electrostatic energy is of the same order of magnitude
as the total ion energy, this can strongly enhance the final ion energy dispersion. To investigate
this effect in depth, we have plotted the total energy of ions in the monoenergetic peak and
the energy stored in the electrostatic field as a function of time for a0 = 10–100 in figure 7.
For small laser amplitudes a0 = 10–20 and correspondingly non-relativistic ion energies, a non-
negligible fraction of the energy (� 30%) is stored in the electrostatic field. As a consequence,
the corresponding ion energy spectra (figures 4(i) and (j)) are considerably wider at the end of
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Figure 7. Phase-stable acceleration (ξ = 1). Temporal evolution of the total
kinetic energy of ions in the monoenergetic peak (solid curves) and the energy
stored in the electrostatic field (dashed curves) for (a) a0 = 10, (b) a0 = 20,
(c) a0 = 40 and (d) a0 = 100. Gray lines show theoretical predictions from
section 3.1.

the simulation. In contrast and as predicted in section 3.1, this effect is negligible for sufficiently
large ion energies. For a0 = 40–100, most of the energy is stored in the accelerated ion bunch
and non-enhanced ion energy dispersion is observed (figures 4(k) and (l)).

In addition, we note that this effect can also be mitigated at low ion energy by using a
more sophisticated laser pulse temporal profile, e.g. by considering Gaussian or hyper-Gaussian
pulses. Figure 8 shows the ion energy spectra obtained using a sixth-order hyper-Gaussian or
Gaussian laser pulse with similar maximum field amplitude a0 = 10, fluence and full-width at
half-maximum. The enhanced energy dispersion due to the long-time behavior of electrons is
strongly mitigated as the pulse is slowly turned off.

4.3. Ion acceleration in the multistage regime

PIC simulations in the regime of multistage acceleration (ξ � 1) are now discussed. Figure 9
shows the time resolved ion energy spectra extracted from simulations with ξ = 4 and different
laser field amplitudes (a0 = 10–100). In these simulations, the laser temporal envelope aL(t) is
constant over a duration corresponding to 20 t0 (we recall that t0 = d0/vp0 is the characteristic
duration of an acceleration stage). Theoretical predictions from the model developed in
section 3.2 are superimposed on the numerical results. Rather good agreement on the minimum
and maximum ion energies as a function of time is found between theory and simulations: our
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Figure 8. Phase-stable acceleration (ξ = 1). The same as figure 4 for a0 = 10
and two different laser intensity profiles: (a–c) for a sixth-order hyper-Gaussian
profile and (d–f) for a Gaussian profile. Red dashed lines in panels (a) and (d)
show theoretical predictions from the light-sail model (solutions of equation (2)).
Gray dashed lines in panels (b, c, e, f) show the energy spectra obtained using a
rectangular laser temporal envelope aL(t) as shown in figure 4 (e, i).

Figure 9. Multistage acceleration (ξ = 4). (a–d) Time-resolved ion energy
spectra. (e–h) Snapshot of the energy spectrum at the end of the laser-target
interaction. (i–l) Snapshot of the energy spectrum at the end of the simulation.
The laser field amplitude is (a, e, i) a0 = 10, (b, f, j) a0 = 20, (c, g, k) a0 = 40 and
(d, h, l) a0 = 100. Red dashed lines in panels (a–d) show theoretical predictions
from the iterative model (section 3.2).

model allows us to correctly predict both the ion mean energy and energy dispersion. For the
cases with a0 = 40 and a0 = 100, ions quickly reach relativistic energies and the dilation in the
laboratory frame of the characteristic stage duration becomes obvious. Also, the duration of the
laser–target interaction (and therefore of the acceleration process) increases as the foil reaches
larger velocities (figure 9).
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Figure 10. Multistage regime (ξ = 4). Details of the target 20 τL after the
beginning of the interaction for (a, c, e) a0 = 10 and (b, d, f) a0 = 100. (a, b) The
laser field amplitude is shown in magenta, the electrostatic field in green and the
ion and electron densities in red and black, respectively. (c, d) Ion distribution
in phase space. (e, f) Electron distribution in phase space. See also movies of
the whole simulation corresponding to (a, c, e) and (b, d, f), available from
stacks.iop.org/NJP/13/123003/mmedia (movies 3 and 4).

Figure 11. Multistage regime (ξ = 4). Ion phase space at different times after
the beginning of interaction: (a) 3 τL, (b) 10.6 τL, (c) 18.2 τL, (d) 25.8 τL and
(e) 33.4 τL. Each time corresponds to a different acceleration stage. In this
simulation, a0 = 10 and ξ = 4.0. The colored dots follow test ions during the
acceleration process. The vertical dashed line shows the position of the laser
piston (position of the maximum electrostatic field).

Additional details of the target structure as well as the ion and electron phase-space
distributions during the acceleration process are given in figures 10 and 11 and in the
corresponding movies. The transition between successive acceleration stages is clearly visible in
the movies. For the case a0 = 10 for instance, the first HB stage terminates at t � 16 τL. As ions
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are reflected again and again by the laser piston, their distribution in phase space becomes more
and more complex in contrast to what was observed during phase-stable acceleration (compare,
for instance, figures 10(c) and (d) and figures 5(c) and (d)).

Furthermore, the ion energy spectra at the end of the simulations (figures 9(i)–(l)) are quite
similar to those obtained at the end of the laser–target interaction (figures 9(e)–(h)). In contrast
to phase-stable acceleration, the ion energy distribution here is not sensitive to the late-time
behavior of the electrons. This is due to the small fraction of laser energy which is stored in the
electrostatic field at ξ � 1.

This excellent control of the ion beam spectrum as well as the large fraction of accelerated
ions ( fi exceeds 90% in these simulations) makes this regime of acceleration particularly
attractive for high-quality ion beam generation. Similarly, in [25], the authors report a fraction
fi ∼ 95% of accelerated ions for a foil with a dimensionless parameter ξ ∼ 3.6 (Z ni0 = 10,
d0 = 0.4 λL and a0 = 5). Numerical simulations also suggest that RPA proceeds in the multistage
regime as soon as ξ � 2, which makes this robust mechanism more likely to be observed in
experiments than phase-stable acceleration.

Finally, as RPA in the multistage regime follows from successive HB of the target, one
may suggest an additional source of energy dispersion for large laser field amplitudes and/or
rather thick targets. Recent studies have indeed underlined the non-stationary behavior of
the laser piston at high laser intensities giving rise to the so-called piston oscillations [24].
This phenomenon implies large-amplitude (typically � 30%) oscillations of the maximum
electrostatic field in the laser piston, leading to an enhanced energy dispersion of ions reflected
during the HB process. While the origin of these oscillations is not yet fully understood, some
of their characteristic features are known: (i) their characteristic period is of the order of the

inverse ion plasma frequency (ωpi =
�
Z2 ni0/mi in our normalized units), (ii) they appear after

a characteristic time ts, which is shorter for larger laser field amplitudes and/or target densities.
For instance, PIC simulations of HB of a thick carbon foil with ion density ni0 = 25 by a CP laser
pulse with a0 = 40 indicate that oscillations in the electrostatic field with a characteristic period
� 1.4 τL and � 35% amplitude with respect to the maximum field strength occur after a time
ts � 5 τL. Increasing the laser field amplitude to a0 = 100 does not change the relative amplitude
of the oscillations or their period but shortens the characteristic time of their appearance to
ts � 3.7 τL.

One could therefore fear that these piston oscillations widen the energy spectrum during
the multistage acceleration. Clearly, this is not the case in the simulations presented in figure 9,
where the energy dispersion is well described by our multistage model (which does not account
for the piston oscillations). However, for these simulations, the characteristic duration of an
acceleration stage t0 ∼ d0/vp0 � 6 τL is rather short and the piston oscillations have scarcely
the time to develop. Therefore, we have performed a simulation with a thicker target (ξ =
10 and a0 = 40). The results of this simulation are presented in figure 12. During the first
acceleration stage, for t = 0–16 τL, oscillations in the maximum electrostatic field are clearly
visible after a time t � 5 τL (figure 12(b)) and result in a rather complex ion phase-space
distribution (figure 12(c) as compared to figure 11(a)). Nevertheless, these regular oscillations
disappear at the end of the first stage (t > 16 τL), which we attribute to the already perturbed
target configuration in the second acceleration stage. There are still some large variations in
the maximum value of the electrostatic field, but these variations are generic to all realistic
simulations we have performed in the multistage regime. They follow more from the global ion
dynamics in the target than from the piston oscillations themselves. Hence, these results suggest
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Figure 12.Multistage regime (ξ = 4). (a) Time-resolved ion energy spectra. The
dashed lines show theoretical prediction from the multistage model. (b) Temporal
evolution of the maximum electrostatic field. Vertical gray lines indicate the
end of the different acceleration stages as predicted from the multistage model.
(c) Ion phase space 14.6τL after the beginning of the interaction. The vertical
red line shows the position of the laser piston (where the electrostatic field is
maximum).

that the so-called piston oscillations are not a concern for the control of ion energy distributions
during RPA in thin foils.

5. Conclusion

A detailed study of ion energy dispersion in RPA ion beams is presented using both analytical
modeling and 1D3V PIC simulations. The description proposed here allows for a greater
insight into the details of RPA of thin foils than the standard macroscopic light-sail model.
In particular, our description provides us with necessary conditions for quasi-monoenergetic
ion beam generation.

Two RPA regimes are identified depending on the dimensionless parameter ξ which
determines, for a given target density and laser field amplitude, the target thickness. For both
regimes, the models we have developed allow us to recover the ion energy temporal evolution
obtained by considering efficient momentum transfer from the laser photons to the target ions
(the usual light-sail model). By accounting for the target structure during the acceleration
process, we can even retrieve the ion energy dispersion.
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For ξ ∼ 1 (thin targets), the strong radiation pressure pushes all electrons to the target
rear side. A large electrostatic field is built up in the whole target and ions are continuously
accelerated. RPA then proceeds in the phase-stable regime introduced in [9]. Two sources of
energy dispersion have been identified in this regime: the electric field inhomogeneity in the
accelerating structure, and the adiabatic foil expansion due to the late-time electron behavior.
This later process is important mainly for low-energy ions and its effect can be mitigated by
using smooth temporal laser profiles. We also recall that predicting more accurately the energy
dispersion in this regime would require us to compute the thickness of the CEL, which cannot
be done using the present model.

For ξ � 2 (thicker targets), the radiation pressure is not strong enough to push electrons to
the target rear side. Instead, the electrostatic field is confined to a very thin region (compared
to the target thickness). It forms the so-called laser piston. Ion acceleration is not continuous
anymore and it proceeds in a multistage regime as originally discussed in [6, 7] and for which
we have developed a simple but sound model. Ion energy dispersion in this regime is mainly
determined by the number of acceleration stages. Small-energy dispersion can thus be achieved
by using long enough laser pulses.

Furthermore, it is worth underlining that, in simulations, the two acceleration regimes can
be distinguished when considering the ion distribution in phase space (x, vx ). Indeed, while the
ion phase space has a rather simple, spiral-like shape in the phase-stable acceleration, it is much
more complex in the multistage regime due to the successive HB processes.

Finally, this work suggests that using moderately intense (and long) laser pulses is
preferable for monoenergetic ion beam generation. The lower limit on the laser intensity actually
follows from the need to accelerate the ions to the desired energy before the target escapes from
the laser focal volume. As for the optimal target thickness, the thinner the target, the higher the
ion energies one can reach. However, maintaining the target integrity in the regime ξ → 1 might
be experimentally difficult. Any non-uniformity in the laser intensity profile may lead to the
removal of electrons and the resulting Coulomb explosion of the target. Also, Rayleigh–Taylor-
like instabilities, which have been observed in 2D simulations [7], may be more detrimental for
very thin targets. Since simulations suggest that RPA occurs in the multistage regime as soon as
ξ � 2, phase-stable acceleration may thus be difficult to achieve in experiments. We therefore
expect multistage acceleration to be the practically relevant acceleration mechanism.
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