Entanglement, thermal area laws, and a "Wick's theorem" for matrix-product states

Jens Eisert

Freie Universität Berlin

Entanglement spectra in complex quantum wave functions Mentions joint work with H. Bernigau, M. Kastoryano, R. Huebener, A. Mari

Entanglement spectra and area laws

- Reduced density operator ρ_A
- Renyi entropies $S_{\alpha}(\rho_A) = \frac{1}{1-\alpha} \log_2 \operatorname{tr}(\rho_A^{\alpha})$
- Collection of all: entanglement spectrum

Chung, Peschel, *Phys Rev B* **62**, 4191 (2000) Bernevig, Haldane, *Phys Rev Lett* **100**, 246802 (2008) Li, Haldane, *Phys Rev Lett* **101**, 010504 (2008) Calabrese, Lefevre, *Phys Rev A* **78**, 03239 (2008) Eisert, Cramer, Plenio, *Rev Mod Phys* **82**, 277 (2010) Cirac, Poilblanc, Schuch, Verstraete, *Phys Rev B* **83**, 245134 (2011) Alba, Haque, Laeuchli, *J Stat Mech* P08011 (2012)

Entanglement spectra and area laws

- Topological order
- Boundary theories
- Approximability with tensor network states

Chung, Peschel, *Phys Rev B* **62**, 4191 (2000) Bernevig, Haldane, *Phys Rev Lett* **100**, 246802 (2008) Li, Haldane, *Phys Rev Lett* **101**, 010504 (2008) Calabrese, Lefevre, *Phys Rev A* **78**, 03239 (2008) Eisert, Cramer, Plenio, *Rev Mod Phys* **82**, 277 (2010) Cirac, Poilblanc, Schuch, Verstraete, *Phys Rev B* **83**, 245134 (2011) Alba, Haque, Laeuchli, *J Stat Mech* P08011 (2012)

One-dimensional systems

- Situation specifically clear in 1D:
 - Gapped models satisfy area laws: $S_{lpha}(
 ho_A) \leq C$
 - Lieb-Robinson bounds
 - Detectability lemma
 - Decay of correlations

Hastings, J Stat Mech P08024 (2007) Audenaert, Eisert, Plenio, Werner, Phys Rev A 66, 042327 (2002) Arad, Landau, Vazitani, Phys Rev B 85, 195145 (2012) Brandao, Horodecki, arXiv:1206.2947

• Critical models: Conformal field theory

$$S_{\alpha}(\rho_A) = \frac{c}{6} \left(1 + \frac{1}{\alpha} \right) \log(l/a) + o(l)$$

Calabrese, Cardy *J Stat Mech* P06002 (2004) Vidal, Latorre, Rico, Kitaev, *Phys Rev Lett* **90**, 227902 (2003) Holzhey, Larsen, Wilczek, *Nucl Phys B* **424**, 443 (1994)

Matrix-product states

- Situation specifically clear in 1D:
 - Matrix-product states satisfy area law, converse is also true:
 - States satisfying (Renyi) area laws can be efficiently approximated

Higher-dimensions

• Still true that **PEPS** satisfy area law

Verstraete, Wolf, Perez-Garcia, Cirac, Phys Rev Lett 96, 220601 (2006)

- Free bosons: $S(\rho_A) \sim L^{D-1}$
- Critical free fermions: $S(\rho_A) \sim L^{D-1} \log_2(L)$

Plenio, Eisert, Dreissig, Cramer, *Phys Rev Lett* **94**, 060503 (2005) Wolf, *Phys Rev Lett* **96**, 010404 (2006) Cramer, Eisert, Plenio, *Phys Rev Lett* **98**, 220603 (2007) Eisert, Cramer, Plenio, *Rev Mod Phys* **82**, 277 (2010)

Overview of the (rest of this) talk

• Part 1: Thermal area laws

Bernigau, Kastoryano, Eisert, in preparation (2012)

• Part 2: "Wick's theorem" for (continuous) matrix product states (short)

Huebener, Mari, Eisert, arXiv:1207.6537, Phys Rev Lett, in press (2012)

Part 1: Thermal area laws and spectra

Area laws for the mutual information

• Entanglement entropy meaningless as correlation measure for Gibbs states

$$\rho = e^{-\beta H}/Z$$

• Mutual information (reduces to entanglement entropy for pure states)

$$I = S(\rho_A) + S(\rho_B) - S(\rho)$$

- Gibbs state minimizes free energy $F(\rho) = \mathrm{tr}(H\rho) - S(\rho)/\beta$,

so $H = H_{AB} + H_V$ gives $F(\rho) \leq F(\rho_A \otimes \rho_B)$, hence

$$I \leq \beta \operatorname{tr}(H_V(\rho_A \otimes \rho_B - \rho)) \leq \beta C \operatorname{Area}$$

Wolf, Verstraete, Hastings, Cirac, *Phys Rev Lett* **100**, 070502 (2008) Bratteli, Robinson, *Operator algebras and quantum statistical mechanics* (1976)

Area laws for the mutual information

- Area law for all temperatures, remarkably simple argument
- But: Linear divergence in β
- True scaling? Capture this in free fermionic integrable systems?

 $I \leq \beta \operatorname{tr}(H_V(\rho_A \otimes \rho_B - \rho)) \leq \beta C \operatorname{Area}$

Wolf, Verstraete, Hastings, Cirac, *Phys Rev Lett* **100**, 070502 (2008) Bratteli, Robinson, *Operator algebras and quantum statistical mechanics* (1976)

Free fermionic models

• Fermionic models (such as XX model in 1D):

$$H = \frac{1}{2} \sum_{i,j} \left(f_i^{\dagger} M_{i,j} f_j - f_i M_{i,j} f_j^{\dagger} \right) , \ M = M^T$$

• Majorana operators:

$$x_j = (f_j^{\dagger} + f_j)/\sqrt{2}$$
$$p_j = i(f_j^{\dagger} - f_j)/\sqrt{2}$$

Covariance matrix

$$-i\Gamma_{i,j} = \langle [r_i, r_j] \rangle = \langle r_i r_j \rangle - \langle r_j r_i \rangle, \ r = (x_1, \dots, x_n, p_1, \dots, p_n)$$

- Entanglement spectrum computable from principal submatrix Γ_A

Circulant and Toeplitz matrices

Circulant and Toeplitz matrices

Symbol
$$g : [0, 2\pi) \to \mathbb{C}$$

$$M_l = \frac{1}{2\pi} \int_0^{2\pi} d\phi g(\phi) e^{il\phi}$$

Its, Jin, Korepin, *J Phys A* **38**, 2975 (2005) Eisert, Cramer, *Phys Rev A* **72**, 042112 (2005) Orus, Latorre, Eisert, Cramer, *Phys Rev A* **73**, 060303 (2006) Calabrese, Essler, J Stat Mech P08029 (2010)

Boettcher, Silbermann, Analysis of Toeplitz operators (2006)

Symbol
$$g : [0, 2\pi) \to \mathbb{C}$$

$$M_l = \frac{1}{2\pi} \int_0^{2\pi} d\phi g(\phi) e^{il\phi}$$

Circulant and Toeplitz matrices

Toeplitz operator techniques for thermal symbols

Thermal area laws

Asymptotic mutual information (here for infinite L) $I = \frac{1}{2\pi^2} \sum_{k=1}^{\infty} \int_0^{2\pi} \int_0^{2\pi} \frac{s\left(g(e^{i\theta})\right) - s\left(g(e^{i\phi})\right)}{g(e^{i\theta}) - g(e^{i\phi})}$ $\times \sin\left(k(\theta - \phi)\right) \left(g'(e^{i\phi}) - g'(e^{i\theta})\right) d\theta d\phi$

Methods of highly oscillatory function kernels

• Theorem: Asymptotic mutual information for thermal states $I = \frac{1}{8\pi^2} \int_0^{2\pi} \int_0^{2\pi} \frac{s\left(g(e^{i\theta})\right) - s\left(g(e^{i\phi})\right)}{g(e^{i\theta}) - g(e^{i\phi})}$ $\times \tan^{-1}\left((\theta - \phi)/2\right) \left(g'(e^{i\phi}) - g'(e^{i\theta})\right) d\theta d\phi$

Bernigau, Kastoryano, Eisert, in preparation (2012)

Thermal area laws

• Example: XX model

berniyau, Kastoryano, Eisert, in preparation (2012)

Higher-dimensional thermal area laws and open systems

- On torus: Analytical thermal area laws, spectra, for higher-dimensional systems
 - $I \leq \log\beta \operatorname{Area}$
- Interplay of temperature and critical properties

• Open, noise driven fermionic systems (variants of Majorana wires): Classification, entanglement versus winding number capturing topological order

Wilming, Kastoryano, Eisert, in preparation (2012) Eisert, Prosen, arXiv:1012.5013 Diehl, Micheli, Kantian, Kraus, Buechler, Zoller, *Nature Physics* 4, 878 (2008)

Lesson of part 1

• Lesson:

- First tight thermal area laws ("entanglement" spectra) for specific models, exponentially tighter than via free energy
- New technical results on Toeplitz operators with smooth symbols
- Needs very low (!) temperature to feel the criticality of the ground state
 - Fun playground to analytically study thermal spectra
 - Good results on approximatability with MPO?

Part 2: "Wick's theorem" for (c)-matrix product states (short)

Matrix-product states

- *n*-site translationally invariant matrix product state with bond dimension *d* :
- $A[s_i] \in \mathbb{C}^{d \times d}$ matrices per site
- Gives $|\psi\rangle = \sum_{s_1,\ldots,s_n} \operatorname{tr}(A[s_n]\dots A[s_1])|s_n,\ldots,s_1\rangle$

Correlation functions of operators, supported at sites $i_1 < \cdots < i_N$ $\langle O^{(i_N)}O^{(i_{N-1})} \dots O^{(i_1)} \rangle = \operatorname{tr}(ME^{i_N-i_{N-1}-1}M \dots ME^{\infty}) =: C^{(N)}(\mathbf{n})$ • Transfer matrix $E = \sum_s A^*[s] \otimes A[s]$

$$M = \sum_{n,m} A^*[m] \otimes A[n] \langle m | O | n \rangle$$

• Thermodynamic limit $E^{\infty} = \lim_{n \to \infty} E^n$

Continuous matrix-product states

 x_3

One-dimensional non-relativistic bosonic quantum field

- Field operators $\Psi(x)$ and $\Psi^{\dagger}(x)$ with $[\Psi(x),\Psi^{\dagger}(x)]=\delta(x-x')$
- Q(x) and R(x) are complex $d \times d$ -matrices

 x_1

$$|\psi\rangle = \operatorname{tr}_{\operatorname{aux}}(\mathcal{P}e^{\int_0^L dx Q(x) \otimes 1 + R(x) \otimes \Psi^{\dagger}(x))}|\Omega\rangle$$

 x_2

Correlation functions of operators:

$$\langle \Psi^{\dagger}(x_2)\Psi^{\dagger}(x_3)\Psi(x_2)\Psi(x_1)\rangle = \operatorname{tr}(M^{[1]}e^{T\tau_2}M^{[3]}e^{T\tau_1}M^{[2]}e^{T_{\infty}}) =: \mathcal{C}_{\mathbf{j}}^{(3)}(\boldsymbol{\tau})$$

- Thermodynamic limit $L \to \infty$
- Translation-invariant case R(x) = R and Q(x) = Q
- Liouvillian matrix $T = Q^* \otimes 1 + 1 \otimes Q + R^* \otimes R$
- Vector of distances $\tau = (\tau_1, \tau_2, \dots, \tau_{N-1}) \in \mathbb{R}^{N-1}$
- Matrices $M^{[j]}$ are $R^* \otimes R$, $1 \otimes R$, $R^* \otimes 1$ and so on

• Full quantum state: needs to specify all correlation functions

• **Question:** It is possible to characterize a (continuous) matrix product state from low-order correlation functions only?

Basic idea for continuous-matrix product states

Correlation functions

 $\langle O^{i_N}O^{N-1}\dots O^{(i_1)}\rangle = C^{(N)}(\boldsymbol{\tau})$

Laplace transform $\mathcal{L}^{(N)}(\boldsymbol{s}) = \int_0^\infty d^{N-1} \boldsymbol{\tau} e^{-\boldsymbol{s} \cdot \boldsymbol{\tau}} \mathcal{C}^{(N)}(\boldsymbol{\tau}), \ s_1, \dots, s_N \in \mathbb{C}$

When T non-degenerate

$$\mathcal{C}^{(N)}(\tau) = \sum_{\substack{k_1, \dots, k_{N-1}=1 \\ d^2}} c^{(N)}(k_1, \dots, k_{N-1}) e^{\lambda_{k_1} \tau_1} \dots e^{\lambda_{k_{N-1}} \tau_{N-1}}$$

$$\mathcal{L}^{(N)}(s) = \sum_{\substack{k_1, \dots, k_{N-1}}} \frac{c^{(N)}(k_1, \dots, k_{N-1})}{(\lambda_{k_1} - s_1) \dots (\lambda_{k_{N-1}} - s_{N-1})}$$

Theorem: (If all two-point function transforms show all the poles (generically the case) all residues of all the poles of all N-point functions with $N \leq 3$ can be obtained)

can give explicit formulas expressing all N-point functions in terms of the **2- and 3-point functions only**

Basic idea for matrix product states

Correlation functions $\langle O^{i_N} O^{N-1} \dots O^{(i_1)} \rangle = C^{(N)}(\boldsymbol{\tau})$

Z-transform

$$\mathcal{Z}^{(N)}(\boldsymbol{\tau}) = \sum_{n_1,\dots,n_N} s_1^{n_1} \dots s_N^{n_N} C^{(N)}(\boldsymbol{n}), \ s_1,\dots,s_N \in \mathbb{C}$$

Theorem: (If all two-point function transforms show all the poles (generically the case) all residues of all the poles of all N-point functions with $N \leq 3$ can be obtained)

can give explicit formulas expressing all N-point functions in terms of the **2- and 3-point functions only**

Lesson of part 2

• Lesson:

- MPS and cMPS can be generically reconstructed based on 2- and 3-point functions only: "Wick's theorem" for (c)MPS
 - Contribution to grasping many-body systems in "MPS-world"
 - Structural insight into low entanglement states
 - Relationship to hidden Markov models?
 - Diagrammatic methods?

Lesson of part 2

Langen, Schmiedmayer et al (2012)

- Reconstructing unknown states from correlation functions?
- Quantum state tomography of quantum fields

Summary and outlook

Thanks for your attention!

