Entanglement spectra in the NRG

Andreas Weichselbaum

Ludwig Maximilians Universität, München
Arnold Sommerfeld Center (ASC)

Acknowledgement
Jan von Delft (LMU)
Theo Costi (Jülich)

Students
Markus Hanl
Arne Alex
Francesco Alaimo
Outline

- Brief introduction to the Numerical Renormalization Group (NRG)
 - iterative diagonalization of quantum impurity models
 - energy flow diagram and finite size scaling
 - entanglement entropy and area law
- Natural emergence of reduced density matrices
- Entanglement flow diagram
 - low-energy fixed point spectra
 - Important “feed-back” from small to large energy scales
- Summary and outlook
Kondo Hamiltonian

\[\mathcal{H} = B \cdot \hat{s} + 2J \hat{s} \cdot \hat{S} + \int_{-D}^{D} d\epsilon \, \epsilon \, \hat{c}^\dagger_{\epsilon \mu} \hat{c}_{\epsilon \mu} \]

\[\hat{S} \equiv \frac{1}{2} \int_{-D}^{D} d\epsilon d\epsilon' \rho \, \hat{c}^\dagger_{\epsilon \mu} \sigma_{\mu \mu'} \hat{c}_{\epsilon' \mu'} \]

\[T_K = \sqrt{2\rho J} e^{-\frac{1}{2\rho J}} \]

logarithmic discretization + tridiagonalization → Wilson chain:

\[\hat{H} = \hat{H}_{\text{dot}} + (2\rho J D) \hat{s} \cdot \hat{\tau} + \frac{1}{2} \left(1 + \frac{1}{\Lambda} \right) \sum_{n=0}^{\infty} \xi_n \Lambda^{n/2} \left(\hat{f}^\dagger_{n\mu} \hat{f}_{n+1,\mu} + \text{H.c.} \right), \quad \hat{\tau} \equiv \hat{f}^\dagger_{0\mu} \sigma_{\mu \mu'} \hat{f}_{0\mu'} \]

Review Bulla et al. (RMP 2008)
Kondo (1964)
Entanglement spectra in the numerical renormalization group

NRG energy eigenstates

Anders and Schiller (2005)

Black-box algorithms for dynamical correlation functions (Lehmann representation)
Single impurity Anderson model

\[\hat{H} = \sum_{\sigma} \varepsilon_{d\sigma} \hat{n}_\sigma + U \hat{n}_\uparrow \hat{n}_\uparrow + \sqrt{\frac{2\Gamma}{\pi}} \sum_{k,\sigma} \left(\hat{c}^\dagger_{k\sigma} \hat{d}_\sigma + H.c. \right) + \sum_{k,\sigma} \varepsilon_{k\sigma} \hat{c}^\dagger_{k\sigma} \hat{c}_{k\sigma} \]

Entanglement spectra in the numerical renormalization group
Correlation functions (Lehmann representation)

- Correlation functions
 \[G_d(t) = \langle e^{i\hat{H}t} \hat{d} e^{-i\hat{H}t} \cdot \hat{d}^\dagger \rangle_T \]

 \[A_d(\omega) \equiv \int \frac{dt}{2\pi} e^{i\omega t} G_d(t) = \sum_n \sum_{ss' \notin KK, e} \rho_{ss'}^{[n]} \cdot |n\langle se|\hat{d}|s'e\rangle_n|^2 \cdot \delta(\omega - E_{ss'}) \]

 \[\int A(\omega)d\omega = \langle \{d, d^\dagger\} \rangle_T = 1 \]

 fulfilled up to double precision noise! \((10^{-16})\)

- \(\text{tr}(\hat{C}^\dagger \cdot \rho_T \cdot \hat{B}(s)) \)

- Collecting spectral data in a single sweep having \((s,s') \notin \{KK\}\)

- \(R_n \equiv \sum_{n' \geq n} w_{n'} \rho_{n,n'}^{FD_M}(T) \)

- See also DM-NRG (Hofstetter, 2000)
NRG and area law

- NRG and DMRG are based on the same algebraic structure: matrix product states (MPS)
- MPS successful in 1D because of area law: entanglement entropy S

$$S = \text{tr} (\rho_A \log \rho_A) = \text{tr} (\rho_B \log \rho_B)$$
$$\propto \text{area between } A \text{ and } B$$
$$\lesssim \log L \text{ (for ground states in 1D)}$$

Wolf et al. (PRL 2008); Eisert et al. (RMP 2010)
NRG and area laws

Entanglement spectra in the numerical renormalization group

calculated w.r.t. “overall ground state”

Entanglement entropy S_E

Wilson shell n (even iterations)

$E_K = 8$

$\Lambda = 2$, $N = 99$, $N_k \leq 380$ (2260)

using $SU(2)_{\text{charge}} \otimes SU(2)_{\text{spin}}$
Entanglement spectra in the numerical renormalization group

Exponentially reduced importance of states at higher energy

\[\rho(E) \sim e^{-4.6E} \]

\(\varepsilon_{\chi=5\%}=6 \cdot 10^{-12} \)

For each iteration \(n \):

\[\hat{H}|s\rangle = E_s|s\rangle \iff \rho_s \equiv \langle s|\hat{\rho}|s\rangle \]

\[\hat{\rho}|r\rangle = \rho_r|r\rangle \iff E_r \equiv \langle r|\hat{H}|r\rangle \]

\(\text{eig}(\rho) \) decays exponentially with excitation energy (non-gapped system!)

\[\Rightarrow \text{a consequence of energy scale separation} \]
Entanglement spectra in the numerical renormalization group

Entanglement flow diagram (SIAM, B=0)

Entanglement spectra
Li, Haldane (2008)
Strong coupling fixed point spectra (SIAM, B=0)
Entanglement spectra in the numerical renormalization group

Entanglement flow diagram (SIAM, $B>0$)

- $n_0 = 8$
- $n_0 \rightarrow \infty$
Entanglement spectra (SIAM, B>0)
Important “feed-back” from small to large energy scales

DM-NRG (Hofstetter 2000): $B \approx T_K$

- requires reduced density matrices which *properly* encode the low-energy physics
- the resulting DM is *not necessarily* a thermal density matrix at intermediate iteration n!
- important for DMFT in the presence of (small) symmetry breaking perturbations
Implications

- Within NRG / DMRG / VMPS / PEPS typically got **both**: \(H_{\text{eff}}(n) \) and \(\rho(n) \)

![Diagram showing entangled system and environment](image)

- Q. How does \(H_{\text{eff}}(n) \) compare with entanglement Hamiltonian of \(\rho(n) \)?

- Taking overall ground state: if \(H_{\text{eff}}(n) \) differs strongly from the entanglement Hamiltonian of \(\rho(n) \), this indicates
 - importance of physics at significantly smaller energy scale
 - not just finite size effect: also affects dynamics at large energies
Summary and Outlook

- Analyzed entanglement spectra within the NRG
 - unique perspective: $H_{\text{eff}}(n)$ built from large energies
 - $\rho_{\text{red}}(n)$ represents the traced out low-energy physics

- Two regimes at higher energies
 - entanglement spectrum $\text{ES}[\rho_{\text{red}}(n)]$ w.r.t. overall ground state
 - does / does not agree with eigenspectrum of $H_{\text{eff}}(n)$

- Clear relevance for dynamical quantities at finite (high) energies

- Linked to “further relevant information” at the low-energy scale

Outlook

- “non-thermal” reduced density matrices
- better quantitative understanding of connection between $H_{\text{eff}}(n)$ and $\rho_{\text{red}}(n)$

Acknowledgment

Supported by DFG (TR-12, SFB631, NIM, and WE4819/1-1).