Instabilities in spatially extended predator-prey systems: Spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations

Martin Baurmann a,*, Thilo Gross b, Ulrike Feudel a

aICBM, Carl von Ossietzky Universität, PF 2503, 26111 Oldenburg, Germany
bAGNLD, Institut für Physik, Universität Potsdam, Am Neuen Palais 10, 14469 Potsdam, Germany

Abstract

We investigate the emergence of spatio-temporal patterns in ecological systems. In particular we study a generalized predator-prey system on a spatial domain. On this domain diffusion is considered as the principal process of motion. We derive the conditions for Hopf and Turing instabilities without specifying the predator-prey functional responses and discuss their biological implications. Furthermore, we identify the codimension-2 Turing-Hopf bifurcation and the codimension-3 Turing-Takens-Bogdanov bifurcation. These bifurcations give rise to complex pattern formation processes in their neighborhood. Our theoretical findings are illustrated with a specific model. In simulations a large variety of different types of long-term behavior, including homogenous distributions, stationary spatial patterns and complex spatio-temporal patterns is observed.

Key words: predator-prey models, Turing-Hopf bifurcation, Turing-Takens-Bogdanov bifurcation, pattern formation

1 Introduction

Ecological systems are characterized by the interaction between species and their natural environment. An important type of interaction which effects pop-
ulation dynamics of all species is predation. Thus predator-prey models have been in the focus of ecological science since the early days of this discipline. It has turned out very soon that predator-prey systems can show different dynamical behaviors (steady states, oscillations, chaos) depending on the value of model parameters. In the past investigations have revealed that spatial inhomogeneities like the inhomogeneous distribution of nutrients as well as interactions on spatial scales like migration can have an important impact on the dynamics of ecological populations (MacArthur (1958); Malchow (2000); Pascual et al. (2002); Petrovskii et al. (2004); Wilson and Abrams (2005)). In particular it has been shown that spatial inhomogeneities promotes the persistence of ecological populations, play an important role in speciation and stabilize population levels.

If spatial domains are considered the question arises how the movement of individuals in this domain should be modeled. A simple approach is to assume that the individuals move randomly. On the level of population densities this leads to a diffusion equation. In this sense a spatial predator-prey system can be considered as a reaction-diffusion system—we sometimes use the term predation-diffusion system for it. Reaction-diffusion systems have been studied in chemistry for a long time (Nicolis and Prigogine (1977); Nicolis and Gaspard (1990)). In particular it has been shown that such systems are capable of self-organized pattern formation (e.g. Winfree (1991); Lengyel and Epstein (1992); Cross and Hohenberg (1993); Maini et al. (1997)). In this process spatial patterns arise not from inhomogeneity of initial or boundary conditions, but purely from the dynamics of the system, i.e. from the interaction of nonlinear reactions of growth processes and diffusion as shown already by Turing (1952). Since then the formation of stationary spatial patterns due to Turing instabilities has been studied in physics, chemistry and biology. In the last decade the focus of research has been shifted to the study of the formation of spatio-temporal patterns. Such spatio-temporal structures have been observed in chemical experiments (Perraud et al. (1993); Rüdiger et al. (2003)). Theoretical studies prove their existence for the Brusselator model (Rovinsky and Menzinger (1992)), in optical systems (Tlidi et al. (1997)) and in semiconductor heterostructures (Just et al. (2001)). It has been shown that spatio-temporal patterns are very likely to be found in the neighborhood of Turing-Hopf bifurcations. In this kind of bifurcation the formation of inhomogeneous stationary patterns caused by Turing instabilities “interacts” with the appearance of oscillations due to a Hopf bifurcation. This mechanism of the emergence of spatio-temporal patterns has been studied intensively during the last years in physical and chemical system (De Wit et al. (1996); Meixner et al. (1997)).

In this paper we extend these results to population dynamical systems and show that spatio-temporal patterns may appear due to the interaction of Turing and Hopf instabilities. The aim of this paper is twofold: On one hand
we analyze the bifurcations in spatial extended population dynamical models from a rather general point of view. We extend the concept of generalized models Gross et al. (2004) to spatially extended systems, in which the spatial interactions are described by diffusion terms. These general models allow us to investigate bifurcations of an equilibrium state in a rather general context, namely in systems, in which the predator-prey functional response is not a priori specified. Furthermore generalized models depend on a set of parameters that allow a clear biological interpretation and that can be used to determine the models dynamics easily. In this way we find Turing, Hopf and transcritical bifurcations depending on the functional forms used to describe processes in specific models. As a result we obtain bifurcation surfaces which intersect leading to higher codimension bifurcations. Using the concept of generalized models we can show that in the neighborhood of Turing-Hopf bifurcations complex spatio-temporal dynamics appear. To illustrate this in more detail and to show the kind of structures which emerge we investigate a specific population dynamical model, namely the Rosenzweig-McArthur model in space.

Our paper is structured as follows: In Sec. 2 we employ a special normalization procedure that identifies natural parameters of the predation-diffusion system. These parameters determine the dynamics of the system and allow a clear biological interpretation. With respect to these parameters we compute the mathematical conditions for pattern formation processes to occur. By these means we locate the Turing bifurcation within the generalized parameter-space. In Sec. 3 we use findings of Gross and Feudel (2004) to compute the transcritical and Hopf bifurcations, as well. We show that the Turing bifurcation can coincide with these bifurcations constituting a codimension-2 bifurcation. Since we are, in particular, interested in the model dynamics in the neighborhood of the Turing-Hopf bifurcation, we perform a series of simulations (Sec. 4). For this purpose it is necessary to choose a specific model for our studies. We employ the Rosenzweig-McArthur model with quadratic mortality of the predator. Depending on the parameters—we keep them in the general context—this model shows homogeneous and inhomogeneous equilibria as well as spatio-temporal dynamics which turns out to be chaotic in space and time.

2 A generalized predation-diffusion system

In this section we analyze a generalized predator-prey system on a two-dimensional domain. Diffusion is considered as the principal mechanism of motion. Such a
system can be described by

$$\begin{align*}
\frac{\partial U}{\partial \tau} &= S(U) - F(U, V) + D_u \nabla^2 U \\
\frac{\partial V}{\partial \tau} &= \eta F(U, V) - M(V) + D_v \nabla^2 V.
\end{align*}$$

(1)

where \(\tau \) denotes time. The variable \(U \) is the biomass density of the prey and \(V \) is the biomass density of the predator. The functions \(S \) and \(M \) determine the species intrinsic population dynamics (primary production and mortality, respectively) and \(F \) is the predation rate. The scalar factor \(\eta \) denotes the fraction of prey’s biomass that can be converted into predator biomass. The diffusion coefficients are denoted by \(D_u \) and \(D_v \), respectively.

The predator-prey dynamics occurs locally in each point of space. Thus we call this part of the dynamics the \textit{local} model. In a local model all terms of Eq. (1) describing the population dynamics in a point of the domain are taken into account whereas the terms of motion (i.e. the diffusion) are neglected. In the following we assume that the local model has an equilibrium with positive values for prey and predator at \((U_s, V_s)\). If for Eq. (1) appropriate boundary conditions (e.g. periodic ones) are considered the spatially constant functions \(U(\vec{z}) = U_s \) and \(V(\vec{z}) = V_s \) constitute an equilibrium for this system. Using this steady state we can introduce the normalized variables

$$
\begin{align*}
u(\vec{z}, \tau) := \frac{U(\vec{z}, \tau)}{U_s} \quad \quad v(\vec{z}, \tau) := \frac{V(\vec{z}, \tau)}{V_s}.
\end{align*}

(2)

and the normalized functions

$$
\begin{align*}
f(u, v) := \frac{F(U_s u, V_s v)}{F(U_s, V_s)} \quad s(u) := \frac{S(U_s u)}{S(U_s)} \quad m(v) := \frac{M(V_s v)}{M(V_s)}
\end{align*}

(3)

We substitute these formulae into Eq. (1) and make use of \(S(U_s) = F(U_s, V_s) \) and \(\eta F(U_s, V_s) = M(V_s) \), conditions which hold in the spatially homogeneous stationary state. This yields

$$\begin{align*}
\frac{\partial u}{\partial \tau} &= \alpha_u \left(s(u) - f(u, v) \right) + D_u \nabla^2 u \\
\frac{\partial v}{\partial \tau} &= \alpha_v \left(f(u, v) - m(v) \right) + D_v \nabla^2 v
\end{align*}$$

(4)

where

$$\begin{align*}
\alpha_u &= \frac{S(U_s)}{U_s} = \frac{F(U_s, V_s)}{U_s} \quad \quad \alpha_v = \frac{M(V_s)}{V_s} = \eta \frac{F(U_s, V_s)}{V_s}
\end{align*}$$

(5)

From the way in which \(\alpha_u \) and \(\alpha_v \) appear in the equations of motion it can be seen that they correspond to characteristic timescales of the system. Indeed, closer inspection reveals that \(\alpha_u \) denotes the per-capita production rate of the
prey in the steady state. This rate has to be equal to the per-capita death rate in the steady state. We can therefore think of α_u as the inverse of the life expectancy of individuals of the prey population in the steady state. In the same way α_v indicates the inverse of the life expectancy of the predators.

By means of time and space normalization ($((\tau, \vec{z}) \rightarrow (t, \vec{x}))$ we obtain

$$
\frac{\partial u}{\partial t} = \rho_r \left(s(u) - f(u, v) \right) + \rho_d \nabla^2 u
$$

$$
\frac{\partial v}{\partial t} = f(u, v) - m(v) + \nabla^2 v
$$

(6)

where $t = \alpha_v \tau$, $\vec{x} = \sqrt{\alpha_v / D_v} \vec{z}$, $\rho_r = \alpha_u / \alpha_v = V_s / (\eta U_s)$ and $\rho_d = D_u / D_v$.

In order to study the stability of homogeneous equilibrium $u_s(x, y) = 1$, $v_s(x, y) = 1$ with respect to perturbations ($\sim \exp(i\vec{\kappa} \vec{x})$) with wave numbers κ_x and κ_y, we consider a linearized form of Eq. (6). The stability of the homogeneous equilibrium is then determined by the eigenvalues of the matrix $J_d(\kappa_x, \kappa_y)$ (see e.g. Murray (2003, pp 82) for detailed description of the approach). In our predation-diffusion system we obtain

$$
J_d(\kappa_x, \kappa_y) = \begin{bmatrix}
\rho_r(\phi - \gamma) - \rho_d(\kappa_x^2 + \kappa_y^2) & -\rho_r \psi \\
\gamma & \psi - p - (\kappa_x^2 + \kappa_y^2)
\end{bmatrix}
$$

(7)

where

$$
\phi := \frac{ds(u)}{du} \bigg|_{u=1} \quad \gamma := \frac{\partial f(u, v)}{\partial u} \bigg|_{u=1, v=1}
$$

$$
\psi := \frac{\partial f(u, v)}{\partial v} \bigg|_{u=1, v=1} \quad p := \frac{dm(v)}{dv} \bigg|_{v=1}
$$

(8)

Like the timescales, the parameters defined above can be interpreted in ecological terms. For this purpose we make use of a specific property of the normalization: If any given function in the model (say, $s(u)$) is linear then the corresponding parameter (in this case ϕ) is one. If the function rises faster than linearly then the parameter is larger than one. For example a quadratic function results in a parameter value of two. If, by contrast, the function rises less than linearly, the corresponding parameter is smaller than one. An extreme case would be a constant function, which corresponds to a parameter value of zero. These relationships are discussed in detail in Gross (2004). In summary we can say that the parameters introduced above describe the linearity or nonlinearity of the functions in the system. In the following we use this insight to discuss the parameters in more detail.

The parameter ϕ describes the dependence of the primary production on the number of producers. In an environment in which nutrients are abundant, we
can imagine that the production is proportional to the number of producers. This results in a linear relationship and therefore in a parameter value of one. However, in most real systems there is at least some nutrient limitation. This limitation can be so strong that the primary production only depends on the available amount of nutrients and is (almost) independent of the number of producers. This situation corresponds to a constant function $s(u)$ and therefore to $\phi = 0$. More generally we can say that the parameter ϕ indicates nutrient availability. In most natural systems we can expect that this parameter has an intermediate value between $\phi = 1$ (abundant nutrients) and $\phi = 0$ (very scarce nutrients).

In analogy to ϕ the parameter γ describes the sensitivity of the predator to prey supply. If prey is scarce the predation rate generally increases linearly or quadratically with the prey density. This corresponds to $\gamma = 1$ or $\gamma = 2$, respectively. However, if prey is abundant the predation rate approaches a constant limiting value since predator saturation occurs. This corresponds to $\gamma = 0$. If prey is neither very abundant nor very scarce intermediate values of γ are found.

The parameter ψ describes the dependence of the predation rate on the density of the predator. In most specific models the predation rate increases linearly with predator density. This corresponds to $\psi = 1$. However, social interactions, interference or intraspecific competition in the predator population can decrease ψ. Again, an extreme case is $\psi = 0$ which indicates that the predation rate is (at least locally) independent of the predator density.

Finally, the parameter p is a generalized version of the well-known exponent of closure (Edwards and Bees (2001)). In many models, like for instance the classical Rosenzweig-MacArthur model, density independent per-capita mortality is assumed. In this case the total mortality rate is proportional to the population density. Consequently, the exponent of closure is one. However, if the abundance of predators is high, density dependent effects start to play an important role. For instance the effects of stress, diseases, overcrowding and intraspecific competition cause quadratic mortality rates which correspond to $p = 2$. In several natural systems this density-dependent mortality rates are more important than density independent causes of mortality. An exponent of closure of two is therefore used in a number of specific models (Edwards and Yool (2000)). If density dependent as well as density independent effects are taken into account p has a fractional value between one and two. In the following we focus mainly on populations that at least in the steady state experience a strong density-dependent mortality. For these populations we assume $p = 2$.

To compute the influence of the generalized parameters on the dynamics of the model, let us consider the Jacobian matrix given by Eq. (7). In this formula we can make use of the assumed isotropy in space and substitute the sum $\kappa_x^2 + \kappa_y^2$.
by κ^2. We obtain
\[
 J_d(\kappa) = \begin{bmatrix}
 \rho_r(\phi - \gamma) - \rho_d\kappa^2 & -\rho_r\psi \\
 \gamma & \psi - p - \kappa^2
 \end{bmatrix}
\]

(9)

Note that $J := J_d(0)$ is the Jacobian matrix for the local model which we obtain by neglecting the diffusion-terms in Eq. (6). This means that the model’s sensitivity with respect to homogeneous perturbations is identical to the stability properties of the local model. Consequently, a homogeneous equilibrium cannot be destabilized by homogeneous perturbations, if the steady state corresponds to an attractor in the local model. Nevertheless, Turing (1952) showed that diffusion can induce the loss of stability with respect to perturbations of certain wave numbers, yielding the condition $\det(J_d(\kappa^2)) < 0$. By straightforward analysis we find that $\det(J_d(\kappa^2))$ is a quadratic polynomial with respect to κ^2. Its extremum is a minimum at some κ^2_e. Presuming the stability of the equilibrium in the local model (in particular $\det(J) > 0$), we find two conditions for Turing-instabilities to occur (cf. Baurmann et al. (2004)). The first one is $\kappa^2_e > 0$. If this condition is violated, it follows from $\det(J_d(0)) = \det(J) > 0$ that $\det(J_d(\kappa^2)) > 0$ for all $\kappa^2 > 0$. Thus $\kappa^2_e > 0$ is a necessary condition for Turing instabilities to occur. The sufficient condition is $\det(J_d(\kappa^2_e)) \leq 0$.

Let us now formulate the Turing conditions in terms of the generalized parameters $p, \gamma, \phi, \psi, \rho_r$ and ρ_d. In the predation-diffusion model we obtain as necessary condition
\[
 \frac{\rho_r}{\rho_d} (\phi - \gamma) > p - \psi. \tag{10}
\]

In general, we have $p > \psi$, so that Eq. (10) implies $\phi > \gamma$. It follows, that the first diagonal entry of J is positive, the second is negative. Thus, we consider the prey species as activator while the predator plays the role of an inhibitor. Furthermore, since $\text{tr}(J) < 0$ we see that $\rho_r > \rho_d$.

The second and sufficient Turing condition for destabilization to occur is
\[
 \frac{\rho_r}{\rho_d} > \frac{1}{(\phi - \gamma)^2} \left(\sqrt{\phi\psi - \phi p + \gamma p + \gamma\psi} \right)^2 \tag{11}
\]

Since $\gamma\psi > 0$ and $\phi\psi - \phi p + \gamma p = \det(J)/\rho_r > 0$ it is guaranteed, that all square roots in the formula are real.

Regarding these Turing conditions, we see that in the model defined in Eq. (6) destabilization due to diffusion is more likely if the values of the parameters γ (the predator sensitivity) and ρ_d (the ratio of diffusion coefficients) are low and that of the nutrient availability ϕ and the relative timescale ρ_r are high. A small exponent of closure p may guarantee the validity of Eq. (10) but can
lead to a violation of Eq. (11). On the other hand the predator interference ψ should be small to fulfill Eq. (11) and has to take large values to promote the validity of Eq. (10). However, as we have shown above, the crucial condition for the loss of stability is Eq. (11), so that we can identify the following factors as promoters of diffusion-induced instabilities: (i) high supply of nutrient, no or weak competition of prey for nutrient; (ii) high abundance of prey; (iii) strong intraspecific competition of predator individuals; (iv) high influence of the predators population density on the mortality of predators (quadratic mortality term); (v) fast diffusive motion of the predator, slow one of the prey; (vi) long timescales for predators, short ones for prey. The points (v) and (vi) describe typical features that hold for many predator prey systems found in nature. By contrast the points (i) to (iv) address special features of a group of systems that can be found in nature under certain conditions, for instance in systems where nutrients are plenty. Hence, anthropogenic eutrophication that is observed in a large number of ecological systems (Verhoeven et al. (2006)) can destabilize spatially homogeneous equilibria in predator-prey systems.

3 Turing instabilities and their relation to other bifurcations

So far we have analyzed the Turing bifurcation. That means we have studied cases, in which diffusion leads to a destabilization of a homogeneous equilibrium that is attracting in a local predator-prey system. The Turing instability results in the emergence of stationary spatially inhomogeneous patterns of predators and prey species. However the region of local stability is bounded by two bifurcations: The Hopf bifurcation in which an attracting equilibrium loses its stability and the transcritical bifurcation where two branches of equilibria meet and exchange their stability properties.

In the Hopf bifurcation the eigenvalues ($\lambda_{1,2}$) of the local system are a pair of conjugated imaginary values. So we can detect it by the following two conditions

$$\lambda_1 + \lambda_2 = \text{tr}(J) = 0 \quad \lambda_1 \lambda_2 = \text{det}(J) > 0 \quad (12)$$

For the generalized predator-prey system we find

$$\rho_1 \phi - \rho_1 \gamma + \psi - p = 0 \quad \phi \psi - \phi p + \gamma p > 0 \quad (13)$$

In a transcritical bifurcation one real eigenvalue of the local model vanishes. Hence we find this kind of bifurcation by solving

$$\lambda_1 \lambda_2 = \text{det}(J) = 0 \quad (14)$$
In the specific context this condition reads

\[\phi \psi - \phi p + \gamma p = 0 \] \hspace{1cm} (15)

We rewrite all bifurcation conditions in terms of the predator sensitivity to prey \(\gamma \):

- **transcritical:**
 \[\gamma_{SN} = \phi - \frac{\phi \psi}{p} \]

- **Hopf:**
 \[\gamma_H = \phi + \frac{\psi - p}{\rho_r} \]
 \[\gamma_H > \gamma_{SN} \]

- **Turing:**
 \[\gamma_T = \frac{\rho_d}{\rho_r} \left(\sqrt{\psi} - \sqrt{p + \frac{\rho_r}{\rho_d} \phi} \right)^2 \]
 \[\gamma_T \in (\gamma_H, \phi + \frac{\rho_d}{\rho_r} (\psi - p)) \] \hspace{1cm} (16)

According to our assumption \(\psi < p \) the interval we refer to in the second Turing condition is non-empty if and only if \(\rho_d < 1 \). This means that the diffusion of the predator diffuses faster than the prey.

Let us discuss the bifurcations represented by these formulas in the parameter space spanned by the predator sensitivity to prey \(\gamma \) and the nutrient availability \(\phi \) (Fig. 1). Note that each point in this parameter space represents a whole class of systems. The upper part of the displayed parameter space corresponds to systems with homogeneous equilibria, that are unconditionally stable. The qualitative behavior of such equilibria changes, if this region is left via a bifurcation (solid line). If an equilibrium is represented by a point in the lower half of the parameter space shown in Fig. 1, it can be destabilized by a homogeneous perturbation (region A) and the system converges to another state depending on the specific choice of the predator-prey functional response. The same holds for equilibria, that can be found between the Hopf bifurcation and the transcritical bifurcation (region B). In this region we would expect homogeneous oscillations. As we will show later the dynamics is more complicated. The equilibria that can be found in the grey triangular area are stable with respect to homogeneous perturbations but loose their stability with respect to perturbations of specific wave numbers \(\kappa \). In this region stationary inhomogeneous patterns can be observed.

The figure also shows three points, in which bifurcation curves meet. These points correspond to bifurcations of codimension-2 and have the following coordinates:
Figure 1. Bifurcation-diagram. We use $\rho_r = 10/3, \psi = 1, p = 2, \rho_d = 0.3$ and vary ϕ. In the figure bifurcations are represented by solid lines. The Turing 1 curve is an auxiliary line, indicating the first Turing condition Eq. (10) formulated as $\kappa_e^2 = 0$. The figure shows the Turing space as the grey triangular area bounded by the Turing bifurcation, the Hopf bifurcation and the transcritical bifurcation. The whole parameter space above transcritical and Hopf bifurcation with exception of the Turing-space corresponds to unconditionally stable equilibria.

Takens-Bogdanov (TB) \hspace{1cm} \lambda_1(0) = \lambda_2(0) = 0 \\
\phi_{TB} = \frac{p(p-\psi)}{\psi\rho_r}$ and $\gamma_{TB} = (p - \psi)^2/(\rho_r \psi)$

transcritical Turing (tcT) \hspace{1cm} \kappa_e^2 = 0 and $\lambda_1(0) = 0$ \\
$\phi_{tcT} = \frac{p_d}{\rho_r \psi} (p - \psi)$ and $\gamma_{tcT} = \frac{p_d}{\rho_r} (p - \psi)^2/\psi$

Turing-Hopf (TH) \hspace{1cm} $\lambda_{1,2}(0) = \pm ia$ \\
and $\lambda_1(\kappa_e^2) = 0$ for exactly one $\kappa_e^2 \geq 0$ \\
$\phi_{TH} = \frac{p - \psi}{\rho_r \psi} \left(\frac{(p-\psi)(\rho_d-1)^2}{4\rho_d} + p \right)$ \\
$\gamma_{TH} = \frac{(p-\psi)^2}{\rho_r \psi} \left(\frac{(\rho_d-1)^2}{4\rho_d} + 1 \right)$

For $\rho_d = 1$ (i.e. $D_u = D_v$) we obtain a codimension-3 bifurcation at (ϕ_{TB}, γ_{TB}). For an equilibrium at this point we can compute the eigenvalues and find $\lambda_1(\kappa^2) = \lambda_2(\kappa^2) = -\kappa^2$.

If we consider bifurcation diagrams like that in Fig. 1 and decrease the difference between the diffusion coefficients so that their ratio ρ_d approaches 1 then the Turing space contracts to the codimension-3 bifurcation point and vanishes there at $\rho_d = 1$.

The obtained bifurcations of higher codimension can be relevant for ecological systems. Even though we analyze only bifurcations of equilibria we can use the knowledge about the occurrence of higher codimension bifurcations to draw conclusions about the possibility of complex dynamics in the systems under consideration. So the Takens-Bogdanov bifurcation is the starting point for a line of homoclinic bifurcations. A homoclinic bifurcation indicates the collision of a limit cycle with a saddle that causes the limit cycle to disappear. Close to a homoclinic bifurcation excitable behavior is usually observed. Here, small perturbations can result to large population outbreaks or crashes.

The region around a Turing-Hopf bifurcation is of most interest for our study of the formation of complex spatio-temporal structures. In the neighborhood of this bifurcation we have to expect the appearance of spatio-temporal chaos in predator-prey systems which we analyze in the next section. In particular chaotic behavior can be observed in the neighborhood of this bifurcation.

4 Spatial patterns resulting from the bifurcations

In the previous section we have described how Turing instabilities can cause a small perturbation to diverge from a homogeneous equilibrium, that corresponds to an attracting steady-state in the local model. However, we are mostly interested in the mechanisms which lead to complex spatio-temporal behavior. This situation occurs, if we focus on equilibria that are not attracting in the local model like the ones beyond the Hopf bifurcation—a case that is not addressed by the classical Turing-theory. We find interesting dynamics for instance in the neighborhood of repelling foci. An analysis of this case is not possible on the basis of a linearization around the homogeneous solution. As well, normal form theory cannot be applied easily on our model. Thus, we study the model’s behavior by performing simulations for the parameter sets of interest. For this purpose it is necessary to specify a certain model for the population dynamics. We employ the well-known Rosenzweig-McArthur model with a quadratic mortality term for the population dynamics

$$\frac{\partial U}{\partial t} = rU(1 - \frac{U}{k}) - q\frac{UV}{W + U} + D_u \nabla^2 U$$

$$\frac{\partial V}{\partial t} = \eta q \frac{UV}{W + U} - V^2 + D_v \nabla^2 V$$

(17)
Generally, system Eq. (17) has one or three equilibria with positive \((U_s, V_s)\). The normalization procedure described in Sec. 2 yields
\[
\frac{\partial u}{\partial t} = \rho_r \left(\frac{k - U_s u}{k - U_s} u - \frac{W + U_s u}{W + U_s} w \right) + \rho_d \nabla^2 u \\
\frac{\partial v}{\partial t} = \frac{W + U_s u}{W + U_s} w - v^2 + \nabla^2 v
\]
(18)
The corresponding parameters are
\[
\phi = \frac{k - 2U_s}{k - U_s} \quad \gamma = \frac{W}{W + U_s} \quad \psi = 1 \quad p = 2
\]
(19)
and
\[
\rho_r = \frac{V_s}{\eta U_s} = \frac{q}{W + U_s}
\]
(20)
This way can interpret the Rosenzweig-McArthur model as a specific example of the class of models considered in the generalized system. In the following we can therefore plot the results of our numerical investigations as a function of the generalized parameters \(\phi, \gamma, \rho, \ldots\)

We start by computing the corresponding equations for the bifurcations. Substituting \(\psi = 1\) and \(p = 2\) we obtain:

transcritical:
\[
\gamma_{SN} = \frac{\phi}{2}
\]
Hopf:
\[
\gamma_H = \phi - \frac{1}{\rho_r}
\]
\[
\gamma_H > \gamma_{SN}
\]
Turing:
\[
\gamma_T = \frac{\rho_d}{\rho_r} \left(1 - \sqrt{2 + \frac{\rho_r}{\rho_d} \phi} \right)^2
\]
\[
\gamma_T \in \left(\gamma_H, \phi - \frac{\rho_d}{\rho_r} \right)
\]
(21)
Thus the Takens-Bogdanov point has the coordinates \(\left(\rho_r = 2/\phi, \gamma = \phi/2 \right)\) and if we additionally have \(\rho_d = 1\), the Takens-Bogdanov bifurcation collides with the Turing bifurcation and we obtain a codimension-3 bifurcation.

Figure 2 shows the bifurcation lines in the lower diagram. Additional information about the model’s dynamics we have gathered by performing a series of simulations. For that purpose we employ the model (17) on a two-dimensional domain with periodic boundary conditions. As initial condition we use a homogeneous distribution \(u(x, y) = 1, v(x, y) = 1\) and add a small perturbation. We run the simulations until it reaches a stationary state or until it shows a behavior that does not seem to change its characteristics anymore. In the simulations different types of dynamics are observed and we have found that the distributions of predator and prey are always of the same type. Consequently,
Figure 2. Bifurcation diagram for the modified Rosenzweig-McArthur model for $\rho_d = 0.30$ and $\rho_r = 3.333$. The lower figure shows the bifurcations of the model (transcritical: black; Hopf: blue; Turing: red). The symbols represent the results of simulations: Blue squares correspond to homogeneous equilibria either with the values $(1, 1)$ (light blue) or with other positive values (dark blue). The red and orange squares symbolize stationary inhomogeneous structures like hot spots (orange, panel 1), stripes (light red, panel 2) or cold spots (dark red). Spatio-temporal patterns have been observed for simulations symbolized by green squares. We distinguish between persistent competition between stationary structures (generally cold spots) and spatio-temporal dynamics (light green, panel 3) and a chaotic behavior on the entire domain (dark green, panel 4).
we can restrict our analysis of pattern formation to one distribution (in the panels (1–4) of Fig. 2 we show the distribution of prey, for instance). For the purpose of classification we distinguish the types of dynamics as follows:

homogeneous distributions: The simulation may converge to a homogeneous profile on a level representing one of the model’s local stable equilibria.

stationary patterns: The system approaches a stationary, inhomogenous pattern. Depending on the particular structure we speak of *hot spots* (isolated zones with high population densities), *stripes* (interlaced stripes of high and low population densities) or *cold spots* (isolated zones with low population densities).

spatio-temporal patterns: The model does not always converge to a stationary distribution. We have found regular structures with small defects in their patterns that do not change their locations (see panel 3 in Fig.2). The zones in which defects occur appear to oscillate. These oscillation seem to continue in the stationary structures but they are damped out with increasing distance to the defect. In other cases all regular structures become extinct and large temporal changes are found always everywhere on the domain at almost every timestep. In these cases we consider the dynamics of the model as chaotic in space and time. However, the existence of chaos has not been proved rigorously.

The bifurcation diagram in Fig. 2 shows that homogeneous distributions with $u = 1$ and $v = 1$ only occur for high values of the predator sensitivity to prey γ and low values of the nutrient availability ϕ. This numerical result corresponds perfectly to our theoretical findings: Above the Hopf and Turing bifurcation (and only there) all simulations converge to a stable homogeneous $(1, 1)$—distribution. Crossing the Turing bifurcation the homogeneous profile becomes unstable and we find that cold spot structures evolve, instead. An increase of ϕ and γ causes a change in the structure via stripes towards hot spots. Along the Hopf bifurcation (on the repelling focus side) we find that no homogeneous oscillations occur—as one could have expected—but, chaotic dynamics is more frequently encountered. Some simulations with parameter values close to those leading to cold spots show a different spatiotemporal behaviour: The squares in light green below the transcritical bifurcation indicate that the corresponding simulations show the coexistence of zones with different patterns. In particular we obtain a cold spot pattern that is disrupted by homogeneous zones (see Fig. 2 panel 3). While the cold spot regions seem to be stationary we obtain a wave like dynamics on the homogeneous zones (from their centers to their margins). For high values of ϕ and low values of γ we observe convergence to homogeneous distributions that have prey-densities with a value different from 1. Consequently, we distinguish these distributions from the homogeneous ones, located on the other side of the bifurcation lines.
To get a deeper insight into the model’s behaviour we select different values of parameter ρ_d, producing for each value a diagram similar to the one shown in Fig. 2. An increase of ρ_d does not change the transcritical and Hopf bifurcations, but causes the Turing bifurcation line to shift towards higher ϕ and to lose steepness. This leads to successive contraction of the Turing-space and its extinction for $\rho_d > 1$. This phenomenon agrees with the Turing theory. The choice $\rho_d = 1$ means that activator and inhibitor diffuse equally fast, so that no Turing instability can occur. In the case that $\rho_d > 1$, the prey (activator) moves faster than the predator which violates the instability condition. According to these changes the area in parameter space corresponding to simulations converging to the homogeneous (1,1)-profiles becomes larger. Similarly, chaotic behaviour becomes more likely when ρ_d takes higher values. Our simulations show that chaotic dynamics replace the convergence to stationary patterns. At a value of $\rho_d = 0.55$ we find that this process has been completed: All red and orange symbols are replaced by dark green squares. Competing dynamics (cf. Fig. 2 panel 3) vanish together with the stationary patterns, so that for high values of ρ_d we find only chaotic behaviour and homogeneous equilibria (of both types). In our series of simulations the area of homogeneous distributions on a prey-level larger than 1 appears to be a more or less invariant region in the lower right corner of the diagram that covers (for each ρ_d) approximately 40% of the studied parameter space.

5 Discussion

We study the dynamics of generalized predator-prey models with spatial interactions. The formulation and subsequent normalization of the generalized model allows us to perform a qualitative analysis of a whole class of predator-prey models without specifying the predator-prey functional response. Within this new framework we formulate the conditions for transcritical, Hopf and Turing bifurcations. In this paper mainly the Turing bifurcation is discussed. It indicates the destabilization of the homogeneous distribution of predators and prey and the emergence of diffusion-induced pattern formation phenomena. We show that a high supply of nutrients, a high abundance of prey, a strong competition between predator individuals for prey and a high influence of intraspecific stress and/or diseases on the mortality of predators is advantageous for the occurrence of Turing-instabilities. Fast population dynamics and slow diffusive motion of the prey (with respect to the corresponding rates affecting the predator) have the same effect.

As a result of the Turing bifurcation stationary, spatially inhomogeneous distributions of prey and predator arise. Since the generalized model exhibits also a loss of stability due to transcritical or Hopf bifurcations, bifurcations of higher codimension like Takens-Bogdanov, Turing-Hopf and transcritical-Turing ap-
pear in the space of generalized parameters. The behaviour of the predator-prey system in the neighborhood of these bifurcations is of particular interest. The existence of a Takens-Bogdanov bifurcation guarantees that predator-prey systems show homoclinic bifurcations, as well. In a homoclinic bifurcation a limit cycle collides with a saddle and disappears. This phenomenon can lead to a high excitability of the system. This means that in predator-prey systems with certain functional responses small perturbations can induce large population outbreaks and crashes.

On the other hand the existence of a Turing-Hopf bifurcation proofs that for the considered predator-prey systems there are parameter regions in which the dynamics shows spatio-temporal behavior that is characterized by almost periodic spatially inhomogeneous oscillations. To study this dynamics and to determine the parameter regions in which they occur, we cannot use analytical methods or normal forms. Thus we had to specify an appropriate model to perform simulations. The aim is to check whether a spatially homogeneous equilibrium is stable, and for the case that it is not, to which solution the model converges. For this purpose we have studied a Rosenzweig-McArthur model with quadratic mortality. We performed a series of simulations on a two-dimensional spatial domain varying three of the generalized parameters.

These simulations reveal that a large variety of different spatio-temporal dynamics can be found in this example of a rather simple predator-prey model with diffusion like spatial interactions. Since our approach using generalized models shows that Turing-Hopf bifurcations leading to spatio-temporal patterns in their neighborhood are generic in a large class of predator-prey systems we can expect such dynamics to occur in many predation-diffusion models. Thus we can conclude that the “interaction” of Turing and Hopf instabilities can be considered as one important mechanism for the appearance of complex spatio-temporal dynamics in population dynamical models. Further studies are necessary to analyse the behaviour of more complex predator-prey models regarding both, the number of their species as well as the nature of considered processes of motion.

References

Edwards, A., Bees, M., 2001. generic dynamics of a simple plankton population
model with a non-integer exponent of closure. Chaos, Solitons and Fractals (12), 289–300.
Rovinsky, A., Menzinger, M., 1992. Interaction of Turing and Hopf bifurca-
tions in chemical systems. Physical Review A 46 (10), 6315–6322.