
MP204

Electricity and Magnetism

2017–2018, practice exam 3

Time allowed: 2 hours

Answer ALL questions

This is a SAMPLE exam, roughly reflecting the general
structure of the MP204 exams for 2017 – 2018.

Remember that ALL questions are to be answered.

If any figures are relevant, please include them with your solution! Sketching
appropriate pictures often helps you arrive at the correct solution.
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1. (a) An infinite charged plane carries surface charge density σ. Use Gauss’
dielectric flux theorem to calculate the electric field at distance z from
the plane. Explain very clearly the shape of the closed surface on
which you apply the theorem. Plot the electric field magnitude as a
function of z.

[12 marks]

(b) The electrostatic field in some region is given by

E = (2x W/L2)̂i+ (5 W/L)k̂

where W and L are positive constants.

Find the potential difference between the points (L, 3L, 0) and (4L,L, 0).

Find the charge density in the region.

What is the electric flux through a surface lying parallel to the x-y
plane and having area 3L2?

[18 marks]
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2. (a) A long straight wire carries steady current I. The wire cross-section
is circular and has radius R. The current density is uniform inside the
wire. Using Ampere’s law, calculate the magnetic field at distance r
from the axis of the wire. Consider separately the cases r < R (inside
the wire) and r > R (outside the wire). Plot the magnitude of the
magnetic field as a function of r.

[14 marks]

(b) An infinite wire carrying current I runs along the y axis; the current
flows from y = −∞ to y = +∞ through the origin. A rectangular
loop lies in the xy plane, with the four corners having coordinates
(3L, 0), (5L, 0), (5L,L), and (3L,L). Find the magnetic flux through
the rectangular loop.

Reminder: An infinitely long straight wire produces a magnetic field
of strength µ0I/(2πd) at a point at distance d from the wire.

[16 marks]

(c) The magnetic field in some region is uniform: B = B0k̂. At time
t = 0, a charged particle (mass m, charge q) is at the origin and has
velocity v = αĵ.

Describe the motion (trajectory) of the particle. Sketch the trajectory,
indicating clearly the coordinates of at least two points on the
trajectory.

[10 marks]
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3. (a) An electromagnetic system is described by the scalar and vector
potentials

V = 3E0Le
−x2/L2

e−2ωt , A =
E0

ω
sin
(ω
c
y − ωt

)
k̂

where L, E0 and ω are positive constants.

Calculate the electric and magnetic fields.

Calculate the charge density, the current density, and the displacement
current density.

[20 marks]

(b) Using Maxwell’s equations in vacuum, derive a continuity equation for
the energy carried by electromagnetic fields, in terms of the Poynting
vector. The vector identity

∇ · (A×B) = B · (∇×A)−A · (∇×B)

might be helpful.

[10 marks]
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Posssibly useful Equations

� Electrostatics: E = −∇V ; VPQ = −
∫ P
Q
E · dl

Electric potential at r due to a point charge q1 at r1: V =
q1

4πε0

1

|r− r1|

Gauss’ law:

∮
Σ

E · dS =
Qenclosed

ε0

� Magnetostatics: Ampere’s law:

∫
C

B · dl = µ0Ienclosed

Biot-Savart law: dB =

(
µ0I

4π

) dl′ ×
(
r̂− r′

)
|r− r′|2

� Force on a charge: F = qE + qv ×B

Magnitic force on a current element: dF = Idl×B

� Fields from potentials: E = −∇V − ∂A

∂t
, B = ∇×A

� The continuity equation: ∇ · J +
∂ρ

∂t
= 0

� Maxwell’s Equations:

1O ∇ · E =
ρ

ε0
2O ∇ ·B = 0

3O ∇× E = − ∂B

∂t

4O ∇×B = µ0J + µ0ε0
∂E

∂t
= µ0 (J + JD)

� Poynting vector: S = 1
µ0
E×B Speed of light: c = 1/

√
µ0ε0

Energy density of electromagnetic fields: u =
1

2
ε0E

2 +
1

2µ0

B2


